Bayesian Unsupervised Learning of DNA Regulatory Binding Regions

J. Corander, Magnus Ekdahl, T. Koski
{"title":"Bayesian Unsupervised Learning of DNA Regulatory Binding Regions","authors":"J. Corander, Magnus Ekdahl, T. Koski","doi":"10.1155/2009/219743","DOIUrl":null,"url":null,"abstract":"Identification of regulatory binding motifs, that is, short specific words, within DNA sequences is a commonly occurring problem in computational bioinformatics. A wide variety of probabilistic approaches have been proposed in the literature to either scan for previously known motif types or to attempt de novo identification of a fixed number (typically one) of putative motifs. Most approaches assume the existence of reliable biodatabase information to build probabilistic a priori description of the motif classes. Examples of attempts to do probabilistic unsupervised learning about the number of putative de novo motif types and their positions within a set of DNA sequences are very rare in the literature. Here we show how such a learning problem can be formulated using a Bayesian model that targets to simultaneously maximize the marginal likelihood of sequence data arising under multiple motif types as well as under the background DNA model, which equals a variable length Markov chain. It is demonstrated how the adopted Bayesian modelling strategy combined with recently introduced nonstandard stochastic computation tools yields a more tractable learning procedure than is possible with the standard Monte Carlo approaches. Improvements and extensions of the proposed approach are also discussed.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"5 1","pages":"219743:1-219743:11"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/219743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Identification of regulatory binding motifs, that is, short specific words, within DNA sequences is a commonly occurring problem in computational bioinformatics. A wide variety of probabilistic approaches have been proposed in the literature to either scan for previously known motif types or to attempt de novo identification of a fixed number (typically one) of putative motifs. Most approaches assume the existence of reliable biodatabase information to build probabilistic a priori description of the motif classes. Examples of attempts to do probabilistic unsupervised learning about the number of putative de novo motif types and their positions within a set of DNA sequences are very rare in the literature. Here we show how such a learning problem can be formulated using a Bayesian model that targets to simultaneously maximize the marginal likelihood of sequence data arising under multiple motif types as well as under the background DNA model, which equals a variable length Markov chain. It is demonstrated how the adopted Bayesian modelling strategy combined with recently introduced nonstandard stochastic computation tools yields a more tractable learning procedure than is possible with the standard Monte Carlo approaches. Improvements and extensions of the proposed approach are also discussed.
DNA调控结合区的贝叶斯无监督学习
识别DNA序列中的调控结合基序,即短的特定词,是计算生物信息学中常见的问题。文献中已经提出了各种各样的概率方法来扫描先前已知的基序类型或尝试重新识别固定数量(通常是一个)的假定基序。大多数方法假设存在可靠的生物数据库信息来建立基序类的概率先验描述。在文献中,试图对假定的从头基序类型的数量及其在一组DNA序列中的位置进行概率无监督学习的例子非常罕见。在这里,我们展示了如何使用贝叶斯模型来制定这样的学习问题,该模型的目标是同时最大化在多种基序类型和背景DNA模型下产生的序列数据的边际似然,背景DNA模型等于可变长度的马尔可夫链。本文演示了采用贝叶斯建模策略与最近引入的非标准随机计算工具相结合如何产生比标准蒙特卡罗方法更易于处理的学习过程。本文还讨论了该方法的改进和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信