Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential

M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh
{"title":"Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential","authors":"M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh","doi":"10.1155/2022/4072418","DOIUrl":null,"url":null,"abstract":"<jats:p>We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>α</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is the coupling constant of Yukawa force to gravitational force, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>λ</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>0</mn>\n <mrow>\n <mo>,</mo>\n </mrow>\n <mrow>\n <mo>∞</mo>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is the range of Yukawa force. It is observed that as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>λ</mi>\n <mo>⟶</mo>\n <mo>∞</mo>\n </math>\n </jats:inline-formula>, the mean-motion of the primaries <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>n</mi>\n <mo>⟶</mo>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>α</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>λ</mi>\n <mo>⟶</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>n</mi>\n <mo>⟶</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>. Further, it is observed that the mean-motion is unity, i.e., <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>n</mi>\n <mo>></mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>α</mi>\n <mo>></mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>n</mi>\n <mo><</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> when <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>α</mi>\n <mo><</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>. The triangular equilibria are not affected by <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> and remain the same as in the classical case of restricted three-body problem. But, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>+</mo>\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.0385209</mn>\n <mo>⋯</mo>\n </math>\n </jats:inline-formula> is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> either for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\">\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> or <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\">\n <mi>λ</mi>\n <mo>=</mo>\n <mn>0.618034</mn>\n </math>\n </jats:inline-formula>, and the critical mass parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\">\n ","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"44 1","pages":"4072418:1-4072418:6"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4072418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α 1 , 1 is the coupling constant of Yukawa force to gravitational force, and λ 0 , is the range of Yukawa force. It is observed that as λ , the mean-motion of the primaries n 1 + α 1 / 2 and as λ 0 , n 1 . Further, it is observed that the mean-motion is unity, i.e., n = 1 for α = 0 , n > 1 if α > 0 and n < 1 when α < 0 . The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μ c = μ 0 + f α , λ , where μ 0 = 0.0385209 is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μ c = μ 0 either for α = 0 or λ = 0.618034 , and the critical mass parameter
考虑汤川势修正的R3BP中的三角均衡
0385209⋯⋯是限制三体问题经典情况下的临界质量参数值。我们还观察到μ c = μ 0对于α = 0或λ = 0.618034,和临界质量参数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信