J. Dillies, D. Dmitrishin, A. Smorodin, A. Stokolos
{"title":"On the Koebe Quarter Theorem for Polynomials","authors":"J. Dillies, D. Dmitrishin, A. Smorodin, A. Stokolos","doi":"10.15673/tmgc.v14i3.2057","DOIUrl":null,"url":null,"abstract":"The Koebe One Quarter Theorem states that the range of any Schlicht function contains the centered disc of radius 1/4 which is sharp due to the value of the Koebe function at −1. A natural question is finding polynomials that set the sharpness of the Koebe Quarter Theorem for polynomials. In particular, it was asked in [7] whether Suffridge polynomials [15] are optimal. For polynomials of degree 1 and 2 that is obviously true. It was demonstrated in [10] that Suffridge polynomials of degree 3 are not optimal and a promising alternative family of polynomials was introduced. These very polynomials were actually discovered earlier independently by M. Brandt [3] and D. Dimitrov [9]. In the current article we reintroduce these polynomials in a natural way and make a far-reaching conjecture that we verify for polynomials up to degree 6 and with computer aided proof up to degree 52. We then discuss the ensuing estimates for the value of the Koebe radius for polynomials of a specific degree.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v14i3.2057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
The Koebe One Quarter Theorem states that the range of any Schlicht function contains the centered disc of radius 1/4 which is sharp due to the value of the Koebe function at −1. A natural question is finding polynomials that set the sharpness of the Koebe Quarter Theorem for polynomials. In particular, it was asked in [7] whether Suffridge polynomials [15] are optimal. For polynomials of degree 1 and 2 that is obviously true. It was demonstrated in [10] that Suffridge polynomials of degree 3 are not optimal and a promising alternative family of polynomials was introduced. These very polynomials were actually discovered earlier independently by M. Brandt [3] and D. Dimitrov [9]. In the current article we reintroduce these polynomials in a natural way and make a far-reaching conjecture that we verify for polynomials up to degree 6 and with computer aided proof up to degree 52. We then discuss the ensuing estimates for the value of the Koebe radius for polynomials of a specific degree.