{"title":"A KNN-SVR Data Mending Method for Insufficient Data of Magnetic Flux Leakage Detection","authors":"Xinbo Zhang, Jian Feng, Zhiqiang Yao, Jinhai Liu, Huaguang Zhang","doi":"10.1109/DDCLS.2018.8516108","DOIUrl":null,"url":null,"abstract":"In magnetic flux leakage (MFL) detection, transient fault appears unavoidably on individual sensor when we collect magnetic flux leakage signals, which makes MFL data insufficient. Data mending for insufficient data concerns the accuracy of the defects inversion. A precise data mending method based on K Nearest Neighbor-Support Vector Regression (KNN-SVR) is introduced, which effectively reduces the training cost of SVR and greatly improves the accuracy of the algorithm. The method is tested by experiment data obtained. The results demonstrate that the proposed method can improve the accuracy rate of data mending of insufficient data with an acceptable time cost.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"5 1","pages":"442-445"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In magnetic flux leakage (MFL) detection, transient fault appears unavoidably on individual sensor when we collect magnetic flux leakage signals, which makes MFL data insufficient. Data mending for insufficient data concerns the accuracy of the defects inversion. A precise data mending method based on K Nearest Neighbor-Support Vector Regression (KNN-SVR) is introduced, which effectively reduces the training cost of SVR and greatly improves the accuracy of the algorithm. The method is tested by experiment data obtained. The results demonstrate that the proposed method can improve the accuracy rate of data mending of insufficient data with an acceptable time cost.