A KNN-SVR Data Mending Method for Insufficient Data of Magnetic Flux Leakage Detection

Xinbo Zhang, Jian Feng, Zhiqiang Yao, Jinhai Liu, Huaguang Zhang
{"title":"A KNN-SVR Data Mending Method for Insufficient Data of Magnetic Flux Leakage Detection","authors":"Xinbo Zhang, Jian Feng, Zhiqiang Yao, Jinhai Liu, Huaguang Zhang","doi":"10.1109/DDCLS.2018.8516108","DOIUrl":null,"url":null,"abstract":"In magnetic flux leakage (MFL) detection, transient fault appears unavoidably on individual sensor when we collect magnetic flux leakage signals, which makes MFL data insufficient. Data mending for insufficient data concerns the accuracy of the defects inversion. A precise data mending method based on K Nearest Neighbor-Support Vector Regression (KNN-SVR) is introduced, which effectively reduces the training cost of SVR and greatly improves the accuracy of the algorithm. The method is tested by experiment data obtained. The results demonstrate that the proposed method can improve the accuracy rate of data mending of insufficient data with an acceptable time cost.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"5 1","pages":"442-445"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In magnetic flux leakage (MFL) detection, transient fault appears unavoidably on individual sensor when we collect magnetic flux leakage signals, which makes MFL data insufficient. Data mending for insufficient data concerns the accuracy of the defects inversion. A precise data mending method based on K Nearest Neighbor-Support Vector Regression (KNN-SVR) is introduced, which effectively reduces the training cost of SVR and greatly improves the accuracy of the algorithm. The method is tested by experiment data obtained. The results demonstrate that the proposed method can improve the accuracy rate of data mending of insufficient data with an acceptable time cost.
漏磁检测数据不足的KNN-SVR数据修补方法
在漏磁检测中,在采集漏磁信号时,单个传感器不可避免地会出现瞬态故障,导致漏磁数据不足。数据不足时的数据修补关系到缺陷反演的准确性。提出了一种基于K近邻-支持向量回归(KNN-SVR)的精确数据修补方法,有效降低了SVR的训练成本,大大提高了算法的准确率。通过实验数据对该方法进行了验证。结果表明,该方法可以在可接受的时间成本下提高数据不足的数据修补准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信