High-resolution residential feeder load characterization and variability modelling

Andrew Pohl, Jay Johnson, S. Sena, R. Broderick, J. Quiroz
{"title":"High-resolution residential feeder load characterization and variability modelling","authors":"Andrew Pohl, Jay Johnson, S. Sena, R. Broderick, J. Quiroz","doi":"10.1109/PVSC.2014.6925193","DOIUrl":null,"url":null,"abstract":"Data from of a highly instrumented residential feeder in Ota City, Japan was used to determine 1 second load variability for the aggregation of 50, 100, 250, and 500 homes. The load variability is categorized by binning the data into seasons, weekdays vs. weekends, and time of day to create artificial sub-15-minute variability estimates for modeling dynamic load profiles. An autoregressive, AR(1) function along with a high pass filter was used to simulate the high resolution variability. The simulated data were validated against the original 1-second measured data.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"1 1","pages":"1471-1475"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data from of a highly instrumented residential feeder in Ota City, Japan was used to determine 1 second load variability for the aggregation of 50, 100, 250, and 500 homes. The load variability is categorized by binning the data into seasons, weekdays vs. weekends, and time of day to create artificial sub-15-minute variability estimates for modeling dynamic load profiles. An autoregressive, AR(1) function along with a high pass filter was used to simulate the high resolution variability. The simulated data were validated against the original 1-second measured data.
高分辨率住宅馈线负荷表征和变异性建模
来自日本太田市一个高度仪表化的住宅馈电系统的数据被用来确定50、100、250和500个家庭的1秒负荷变异性。负载可变性通过将数据分成季节、工作日、周末和一天中的时间来分类,从而为建模动态负载概要创建人工的低于15分钟的可变性估计。使用自回归的AR(1)函数和高通滤波器来模拟高分辨率变异性。模拟数据与原始的1秒测量数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信