Submodular Optimization in the MapReduce Model

Paul Liu, J. Vondrák
{"title":"Submodular Optimization in the MapReduce Model","authors":"Paul Liu, J. Vondrák","doi":"10.4230/OASIcs.SOSA.2019.18","DOIUrl":null,"url":null,"abstract":"Submodular optimization has received significant attention in both practice and theory, as a wide array of problems in machine learning, auction theory, and combinatorial optimization have submodular structure. In practice, these problems often involve large amounts of data, and must be solved in a distributed way. One popular framework for running such distributed algorithms is MapReduce. In this paper, we present two simple algorithms for cardinality constrained submodular optimization in the MapReduce model: the first is a $(1/2-o(1))$-approximation in 2 MapReduce rounds, and the second is a $(1-1/e-\\epsilon)$-approximation in $\\frac{1+o(1)}{\\epsilon}$ MapReduce rounds.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"99 1","pages":"18:1-18:10"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.SOSA.2019.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Submodular optimization has received significant attention in both practice and theory, as a wide array of problems in machine learning, auction theory, and combinatorial optimization have submodular structure. In practice, these problems often involve large amounts of data, and must be solved in a distributed way. One popular framework for running such distributed algorithms is MapReduce. In this paper, we present two simple algorithms for cardinality constrained submodular optimization in the MapReduce model: the first is a $(1/2-o(1))$-approximation in 2 MapReduce rounds, and the second is a $(1-1/e-\epsilon)$-approximation in $\frac{1+o(1)}{\epsilon}$ MapReduce rounds.
MapReduce模型中的子模块优化
由于机器学习、拍卖理论和组合优化中的大量问题都具有子模块结构,因此子模块优化在实践和理论中都受到了极大的关注。在实践中,这些问题往往涉及大量的数据,必须以分布式的方式解决。运行这种分布式算法的一个流行框架是MapReduce。在本文中,我们提出了两个简单的MapReduce模型中基数约束子模优化算法:第一个算法是在2轮MapReduce中进行$(1/2-o(1))$ -近似,第二个算法是在$\frac{1+o(1)}{\epsilon}$轮MapReduce中进行$(1-1/e-\epsilon)$ -近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信