{"title":"Submodular Optimization in the MapReduce Model","authors":"Paul Liu, J. Vondrák","doi":"10.4230/OASIcs.SOSA.2019.18","DOIUrl":null,"url":null,"abstract":"Submodular optimization has received significant attention in both practice and theory, as a wide array of problems in machine learning, auction theory, and combinatorial optimization have submodular structure. In practice, these problems often involve large amounts of data, and must be solved in a distributed way. One popular framework for running such distributed algorithms is MapReduce. In this paper, we present two simple algorithms for cardinality constrained submodular optimization in the MapReduce model: the first is a $(1/2-o(1))$-approximation in 2 MapReduce rounds, and the second is a $(1-1/e-\\epsilon)$-approximation in $\\frac{1+o(1)}{\\epsilon}$ MapReduce rounds.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"99 1","pages":"18:1-18:10"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.SOSA.2019.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Submodular optimization has received significant attention in both practice and theory, as a wide array of problems in machine learning, auction theory, and combinatorial optimization have submodular structure. In practice, these problems often involve large amounts of data, and must be solved in a distributed way. One popular framework for running such distributed algorithms is MapReduce. In this paper, we present two simple algorithms for cardinality constrained submodular optimization in the MapReduce model: the first is a $(1/2-o(1))$-approximation in 2 MapReduce rounds, and the second is a $(1-1/e-\epsilon)$-approximation in $\frac{1+o(1)}{\epsilon}$ MapReduce rounds.