{"title":"Individual role classification for players defending corners in football (soccer)","authors":"Pascal Bauer, Gabriel Anzer, J. Smith","doi":"10.1515/jqas-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract Choosing the right defensive corner-strategy is a crucial task for each coach in professional football (soccer). Although corners are repeatable and static situations, due to their low conversion rates, several studies in literature failed to find useable insights about the efficiency of various corner strategies. Our work aims to fill this gap. We hand-label the role of each defensive player from 213 corners in 33 matches, where we then employ an augmentation strategy to increase the number of data points. By combining a convolutional neural network with a long short-term memory neural network, we are able to detect the defensive strategy of each player based on positional data. We identify which of seven well-established roles a defensive player conducted (player-marking, zonal-marking, placed for counterattack, back-space, short defender, near-post, and far-post). The model achieves an overall weighted accuracy of 89.3%, and in the case of player-marking, we are able to accurately detect which offensive player the defender is marking 80.8% of the time. The performance of the model is evaluated against a rule-based baseline model, as well as by an inter-labeller accuracy. We demonstrate that rules can also be used to support the labelling process and serve as a baseline for weak supervision approaches. We show three concrete use-cases on how this approach can support a more informed and fact-based decision making process.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2022-0003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Choosing the right defensive corner-strategy is a crucial task for each coach in professional football (soccer). Although corners are repeatable and static situations, due to their low conversion rates, several studies in literature failed to find useable insights about the efficiency of various corner strategies. Our work aims to fill this gap. We hand-label the role of each defensive player from 213 corners in 33 matches, where we then employ an augmentation strategy to increase the number of data points. By combining a convolutional neural network with a long short-term memory neural network, we are able to detect the defensive strategy of each player based on positional data. We identify which of seven well-established roles a defensive player conducted (player-marking, zonal-marking, placed for counterattack, back-space, short defender, near-post, and far-post). The model achieves an overall weighted accuracy of 89.3%, and in the case of player-marking, we are able to accurately detect which offensive player the defender is marking 80.8% of the time. The performance of the model is evaluated against a rule-based baseline model, as well as by an inter-labeller accuracy. We demonstrate that rules can also be used to support the labelling process and serve as a baseline for weak supervision approaches. We show three concrete use-cases on how this approach can support a more informed and fact-based decision making process.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.