Robust Seizure Prediction Based on Multivariate Empirical Mode Decomposition and Maximum Synchronization Modularity

Lihan Tang, Menglian Zhao, Xiaolin Yang, Yangtao Dong, Xiaobo Wu
{"title":"Robust Seizure Prediction Based on Multivariate Empirical Mode Decomposition and Maximum Synchronization Modularity","authors":"Lihan Tang, Menglian Zhao, Xiaolin Yang, Yangtao Dong, Xiaobo Wu","doi":"10.1109/IECON43393.2020.9254475","DOIUrl":null,"url":null,"abstract":"Reliable and timely seizure prediction has been increasingly helpful and indispensable for epileptic patients, ensuring safety and improving life quality. Based on electroencephalogram (EEG), a new patient-specific seizure prediction method is proposed in this paper to detect impending seizures automatically and accurately, using a novel indicator called maximum synchronization modularity. As the first step towards this goal, raw EEG signals are decomposed by multivariate empirical mode decomposition (MEMD). Then graph community detection algorithm is applied to characterize the phase synchronization modularity of sub-band EEG signals. Thus, the deep interaction of scalp electrical activity can be effectively revealed. Finally, radial basis function neural network (RBFNN) is used for the classification. The proposed method achieves an average prediction accuracy of 99.06% and an average sensitivity of 100% on CHB-MIT scalp EEG database, outperforming related works based on the same database.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"32 1","pages":"507-512"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9254475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable and timely seizure prediction has been increasingly helpful and indispensable for epileptic patients, ensuring safety and improving life quality. Based on electroencephalogram (EEG), a new patient-specific seizure prediction method is proposed in this paper to detect impending seizures automatically and accurately, using a novel indicator called maximum synchronization modularity. As the first step towards this goal, raw EEG signals are decomposed by multivariate empirical mode decomposition (MEMD). Then graph community detection algorithm is applied to characterize the phase synchronization modularity of sub-band EEG signals. Thus, the deep interaction of scalp electrical activity can be effectively revealed. Finally, radial basis function neural network (RBFNN) is used for the classification. The proposed method achieves an average prediction accuracy of 99.06% and an average sensitivity of 100% on CHB-MIT scalp EEG database, outperforming related works based on the same database.
基于多元经验模式分解和最大同步模块化的鲁棒癫痫发作预测
可靠、及时的癫痫发作预测对癫痫病人的安全、提高生活质量越来越有帮助和不可或缺。本文提出了一种基于脑电图(EEG)的患者特异性癫痫发作预测方法,该方法采用最大同步模块化(maximum synchronization modularity)指标自动准确地检测即将发生的癫痫发作。作为实现这一目标的第一步,原始脑电信号被多元经验模式分解(MEMD)分解。然后应用图社区检测算法表征子带脑电信号的相位同步模块化。因此,可以有效地揭示头皮电活动的深层相互作用。最后,采用径向基函数神经网络(RBFNN)进行分类。该方法在CHB-MIT头皮EEG数据库上的平均预测准确率为99.06%,平均灵敏度为100%,优于基于相同数据库的相关研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信