Philipp Greiner, J. Grosinger, C. Steffan, G. Holweg, W. Bösch
{"title":"Non-trimmable LC oscillator for all CMOS frequency control","authors":"Philipp Greiner, J. Grosinger, C. Steffan, G. Holweg, W. Bösch","doi":"10.1109/ESSCIRC.2015.7313848","DOIUrl":null,"url":null,"abstract":"A fully integrated all CMOS oscillator frequency reference is presented that is suitable for crystal replacement in relaxed requirement applications. The frequency reference constitutes a new approach of CMOS frequency control based on a reference-less non-trimmable LC oscillator (LCO) with a resonance frequency of approximately 3.15 GHz and a low jitter fractional divider. The fractional frequency divider consists of an integer divider and a programmable delay and thus provides a wide range of possible output frequencies from 1 to 180 MHz. A complex control logic comprising a nonvolatile memory (NVM) performs the calibration, frequency setup, and temperature compensation of the device. A planar magnetic decoupling structure is used to reduce the sensitivity of the LCO to its environment. This implementation allows the assembly of the LCO chip in a standard plastic package without using a Faraday shield. The device achieves an initial frequency stability of ±50 ppm over a temperature region of -20 to 85°C. The presented architecture overall dissipates 6.5mA from a 1.8-3.6V power supply (buffer neglected) and is competitive to already existing integer divider based LCO frequency reference realisations.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":"1996 1","pages":"140-143"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2015.7313848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A fully integrated all CMOS oscillator frequency reference is presented that is suitable for crystal replacement in relaxed requirement applications. The frequency reference constitutes a new approach of CMOS frequency control based on a reference-less non-trimmable LC oscillator (LCO) with a resonance frequency of approximately 3.15 GHz and a low jitter fractional divider. The fractional frequency divider consists of an integer divider and a programmable delay and thus provides a wide range of possible output frequencies from 1 to 180 MHz. A complex control logic comprising a nonvolatile memory (NVM) performs the calibration, frequency setup, and temperature compensation of the device. A planar magnetic decoupling structure is used to reduce the sensitivity of the LCO to its environment. This implementation allows the assembly of the LCO chip in a standard plastic package without using a Faraday shield. The device achieves an initial frequency stability of ±50 ppm over a temperature region of -20 to 85°C. The presented architecture overall dissipates 6.5mA from a 1.8-3.6V power supply (buffer neglected) and is competitive to already existing integer divider based LCO frequency reference realisations.