Xiang He, Jake A. Steiner, Joseph R. Bourne, K. Leang
{"title":"Gaussian-Based Kernel for Multi-Agent Aerial Chemical-Plume Mapping","authors":"Xiang He, Jake A. Steiner, Joseph R. Bourne, K. Leang","doi":"10.1115/dscc2019-9027","DOIUrl":null,"url":null,"abstract":"\n This paper presents a multi-vehicle chemical-plume mapping process that incorporates onboard wind speed and direction estimation. A Gaussian plume model is exploited to develop the kernel for extrapolating the measured data. Compared to the uni- or bi-variate kernels, the proposed kernel uses the estimated wind information to refine the chemical concentration prediction downwind of the source. This new approach, compared to previous mapping methods, relies on fewer parameters and provides 30% reduction in the mapping mean-squared error. Simulation and experimental results are presented to validate the approach. Specifically, outdoor flight tests show three aerial robots with chemical sensing capabilities mapping a real propane gas leak to demonstrate feasibility of the approach.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a multi-vehicle chemical-plume mapping process that incorporates onboard wind speed and direction estimation. A Gaussian plume model is exploited to develop the kernel for extrapolating the measured data. Compared to the uni- or bi-variate kernels, the proposed kernel uses the estimated wind information to refine the chemical concentration prediction downwind of the source. This new approach, compared to previous mapping methods, relies on fewer parameters and provides 30% reduction in the mapping mean-squared error. Simulation and experimental results are presented to validate the approach. Specifically, outdoor flight tests show three aerial robots with chemical sensing capabilities mapping a real propane gas leak to demonstrate feasibility of the approach.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.