Lower Extreme Carrying Exoskeleton Robot Adative Control Using Wavelet Neural Networks

Xiuxia Yang, Lihua Gui, Zhiyong Yang, W. Gu
{"title":"Lower Extreme Carrying Exoskeleton Robot Adative Control Using Wavelet Neural Networks","authors":"Xiuxia Yang, Lihua Gui, Zhiyong Yang, W. Gu","doi":"10.1109/ICNC.2008.754","DOIUrl":null,"url":null,"abstract":"Using the wavelet neural networks, an adaptive control system, with two wavelet neural networks as controller and dynamics model identifier respectively, is developed for lower extreme carrying exoskeleton robot. Because the wavelet neural networks have the ability to approximate nonlinear functions and good advantage of time-frequency localization properties, this system can identify nonlinear system dynamic characters more precisely, and can map more complex control strategies. Results show that this control system is more effective than those based on normal controller, where the exoskeleton tracking precision is high and the operator feels very little torque.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"16 1","pages":"399-403"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Using the wavelet neural networks, an adaptive control system, with two wavelet neural networks as controller and dynamics model identifier respectively, is developed for lower extreme carrying exoskeleton robot. Because the wavelet neural networks have the ability to approximate nonlinear functions and good advantage of time-frequency localization properties, this system can identify nonlinear system dynamic characters more precisely, and can map more complex control strategies. Results show that this control system is more effective than those based on normal controller, where the exoskeleton tracking precision is high and the operator feels very little torque.
基于小波神经网络的极限搬运外骨骼机器人自适应控制
利用小波神经网络,开发了一种以两个小波神经网络分别作为控制器和动力学模型辨识器的下肢负重外骨骼机器人自适应控制系统。由于小波神经网络具有近似非线性函数的能力和良好的时频局部化特性,该系统可以更精确地识别非线性系统的动态特性,并可以映射更复杂的控制策略。结果表明,该控制系统比基于普通控制器的控制系统更有效,外骨骼跟踪精度高,操作人员感受到的扭矩很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信