Generalized Quaternions and Matrix Algebra

Erhan Ata, Ü. Z. Savcı
{"title":"Generalized Quaternions and Matrix Algebra","authors":"Erhan Ata, Ü. Z. Savcı","doi":"10.35414/akufemubid.1182145","DOIUrl":null,"url":null,"abstract":"In this paper, we established the connection between generalized quaternion algebra and real (complex) matrix algebras by using Hamilton operators. We obtained real and complex matrices corresponding to the real and complex basis of the generalized quaternions. Also, we investigated the basis features of real and complex matrices. We get Pauli matrices corresponding to generalized quaternions. Then, we have shown that the algebra produced by these matrices is isomorphic to the Clifford algebra Cl(E_αβ^3) produced by generalized space E_αβ^3. \nFinally, we studied the relations among the symplectic matrices group corresponding to generalized unit quaternions, generalized unitary matrices group, and generalized orthogonal matrices group.","PeriodicalId":7433,"journal":{"name":"Afyon Kocatepe University Journal of Sciences and Engineering","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afyon Kocatepe University Journal of Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35414/akufemubid.1182145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we established the connection between generalized quaternion algebra and real (complex) matrix algebras by using Hamilton operators. We obtained real and complex matrices corresponding to the real and complex basis of the generalized quaternions. Also, we investigated the basis features of real and complex matrices. We get Pauli matrices corresponding to generalized quaternions. Then, we have shown that the algebra produced by these matrices is isomorphic to the Clifford algebra Cl(E_αβ^3) produced by generalized space E_αβ^3. Finally, we studied the relations among the symplectic matrices group corresponding to generalized unit quaternions, generalized unitary matrices group, and generalized orthogonal matrices group.
广义四元数与矩阵代数
本文利用Hamilton算子建立了广义四元数代数与实(复)矩阵代数之间的联系。得到了广义四元数实基和复基对应的实矩阵和复矩阵。此外,我们还研究了实矩阵和复矩阵的基特征。我们得到了与广义四元数对应的泡利矩阵。然后证明了由这些矩阵产生的代数与广义空间E_αβ^3产生的Clifford代数Cl(E_αβ^3)是同构的。最后,研究了广义单位四元数对应的辛矩阵群、广义酉矩阵群和广义正交矩阵群之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信