Removal lemmas with polynomial bounds

Lior Gishboliner, A. Shapira
{"title":"Removal lemmas with polynomial bounds","authors":"Lior Gishboliner, A. Shapira","doi":"10.1145/3055399.3055404","DOIUrl":null,"url":null,"abstract":"We give new sufficient and necessary criteria guaranteeing that a hereditary graph property can be tested with a polynomial query complexity. Although both are simple combinatorial criteria, they imply almost all prior positive and negative results of this type, as well as many new ones. One striking application of our results is that every semi-algebraic graph property (e.g., being an interval graph, a unit-disc graph etc.) can be tested with a polynomial query complexity. This confirms a conjecture of Alon. The proofs combine probabilistic ideas together with a novel application of a conditional regularity lemma for matrices, due to Alon, Fischer and Newman.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We give new sufficient and necessary criteria guaranteeing that a hereditary graph property can be tested with a polynomial query complexity. Although both are simple combinatorial criteria, they imply almost all prior positive and negative results of this type, as well as many new ones. One striking application of our results is that every semi-algebraic graph property (e.g., being an interval graph, a unit-disc graph etc.) can be tested with a polynomial query complexity. This confirms a conjecture of Alon. The proofs combine probabilistic ideas together with a novel application of a conditional regularity lemma for matrices, due to Alon, Fischer and Newman.
具有多项式界的去除引理
我们给出了新的充分必要的准则,保证了遗传图性质可以用多项式查询复杂度进行检验。虽然两者都是简单的组合标准,但它们暗示了这种类型的几乎所有先前的正面和负面结果,以及许多新的结果。我们的结果的一个引人注目的应用是,每个半代数图的性质(例如,区间图,单位盘图等)都可以用多项式查询复杂度进行测试。这证实了阿隆的一个猜想。这些证明结合了概率思想和对矩阵的条件正则引理的新应用,这是由Alon, Fischer和Newman提出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信