A geometrically intrinsic Lagrangian-Eulerian scheme for 2D Shallow Water Equations with variable topography and discontinuous data

E. Abreu, Elena Bachini, J. Pérez, M. Putti
{"title":"A geometrically intrinsic Lagrangian-Eulerian scheme for 2D Shallow Water Equations with variable topography and discontinuous data","authors":"E. Abreu, Elena Bachini, J. Pérez, M. Putti","doi":"10.48550/arXiv.2209.03795","DOIUrl":null,"url":null,"abstract":"We present a Lagrangian-Eulerian scheme to solve the shallow water equations in the case of spatially variable bottom geometry. Using a local curvilinear reference system anchored on the bottom surface, we develop an effective first-order and high-resolution space-time discretization of the no-flow surfaces and solve a Lagrangian initial value problem that describes the evolution of the balance laws governing the geometrically intrinsic shallow water equations. The evolved solution set is then projected back to the original surface grid to complete the proposed Lagrangian-Eulerian formulation. The resulting scheme maintains monotonicity and captures shocks without providing excessive numerical dissipation also in the presence of non-autonomous fluxes such as those arising from the geometrically intrinsic shallow water equation on variable topographies. We provide a representative set of numerical examples to illustrate the accuracy and robustness of the proposed Lagrangian-Eulerian formulation for two-dimensional surfaces with general curvatures and discontinuous initial conditions.","PeriodicalId":7991,"journal":{"name":"Appl. Math. Comput.","volume":"30 1","pages":"127776"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Appl. Math. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.03795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a Lagrangian-Eulerian scheme to solve the shallow water equations in the case of spatially variable bottom geometry. Using a local curvilinear reference system anchored on the bottom surface, we develop an effective first-order and high-resolution space-time discretization of the no-flow surfaces and solve a Lagrangian initial value problem that describes the evolution of the balance laws governing the geometrically intrinsic shallow water equations. The evolved solution set is then projected back to the original surface grid to complete the proposed Lagrangian-Eulerian formulation. The resulting scheme maintains monotonicity and captures shocks without providing excessive numerical dissipation also in the presence of non-autonomous fluxes such as those arising from the geometrically intrinsic shallow water equation on variable topographies. We provide a representative set of numerical examples to illustrate the accuracy and robustness of the proposed Lagrangian-Eulerian formulation for two-dimensional surfaces with general curvatures and discontinuous initial conditions.
具有可变地形和不连续数据的二维浅水方程的几何本征拉格朗日-欧拉格式
本文提出了一种求解空间变底几何条件下浅水方程的拉格朗日-欧拉格式。利用锚定在底表面的局部曲线参照系,我们建立了一种有效的一阶高分辨率无流表面时空离散化方法,并求解了一个描述控制几何固有浅水方程的平衡定律演化的拉格朗日初值问题。然后将进化的解集投影回原始表面网格,以完成所提出的拉格朗日-欧拉公式。所得到的方案保持单调性并捕获冲击,而不会在存在非自主通量的情况下提供过多的数值耗散,例如在可变地形上由几何上固有的浅水方程产生的通量。我们提供了一组具有代表性的数值例子来说明所提出的具有一般曲率和不连续初始条件的二维曲面的拉格朗日-欧拉公式的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信