The geometry of glide in Ni3Al at temperatures above the flow stress peak

P.M. Hazzledine , M.H. Yoo , Y.Q. Sun
{"title":"The geometry of glide in Ni3Al at temperatures above the flow stress peak","authors":"P.M. Hazzledine ,&nbsp;M.H. Yoo ,&nbsp;Y.Q. Sun","doi":"10.1016/0001-6160(89)90195-8","DOIUrl":null,"url":null,"abstract":"<div><p>At temperatures above the flow stress peak in Ni<sub>3</sub>Al the slip system is 〈110〉{001}. At higher temperatures still a second system, 〈010〉{001}, also operates. Both types of dislocation form glide loops which dissociate into <span><math><mtext>1</mtext><mtext>2</mtext></math></span> 〈110〉 APB-linked partials and both glide loops show ranges of elastic instability. Three types of dislocation may lower their energy further by a second dissociation on {111} planes: the screw 〈110〉 forms a Kear-Wilsdorf lock, the edge 〈110〉 forms a Lomer-Cottrell lock and the 45° 〈010〉 forms a B5 lock. Interactions between 〈110〉 and 〈010〉 dislocations give rise to two more dislocations with non-planar cores, the 〈110〉 lock and the 〈111〉 lock. All these locked dislocations are slow moving or immobile and all, except for the 〈111〉 lock, have been observed in the electron microscope. The formation of 〈110〉 and 〈111〉 locks and the mixing of the two slip systems through interactions between them give an explanation for the high-temperature work-hardening peak found in Ni<sub>3</sub>Al.</p></div>","PeriodicalId":6969,"journal":{"name":"Acta Metallurgica","volume":"37 12","pages":"Pages 3235-3244"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0001-6160(89)90195-8","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0001616089901958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

At temperatures above the flow stress peak in Ni3Al the slip system is 〈110〉{001}. At higher temperatures still a second system, 〈010〉{001}, also operates. Both types of dislocation form glide loops which dissociate into 12 〈110〉 APB-linked partials and both glide loops show ranges of elastic instability. Three types of dislocation may lower their energy further by a second dissociation on {111} planes: the screw 〈110〉 forms a Kear-Wilsdorf lock, the edge 〈110〉 forms a Lomer-Cottrell lock and the 45° 〈010〉 forms a B5 lock. Interactions between 〈110〉 and 〈010〉 dislocations give rise to two more dislocations with non-planar cores, the 〈110〉 lock and the 〈111〉 lock. All these locked dislocations are slow moving or immobile and all, except for the 〈111〉 lock, have been observed in the electron microscope. The formation of 〈110〉 and 〈111〉 locks and the mixing of the two slip systems through interactions between them give an explanation for the high-temperature work-hardening peak found in Ni3Al.

温度高于流动应力峰值时Ni3Al滑动的几何形状
当温度高于Ni3Al流变应力峰值时,滑移体系< 110 >{001}。在较高的温度下,第二个系统< 010 >{001}也在工作。两种类型的位错都形成滑动环,这些滑动环解离成12个< 110 > apb连接的部分,两种滑动环都表现出弹性不稳定性。有三种类型的位错可以通过在{111}平面上的二次解离进一步降低它们的能量:螺旋< 110 >形成Kear-Wilsdorf锁,边缘< 110 >形成lomo - cottrell锁,45°< 010 >形成B5锁。< 110 >和< 010 >位错之间的相互作用产生了另外两种具有非平面核的位错,< 110 >锁和< 111 >锁。所有这些锁定位错都是缓慢移动或不移动的,除了< 111 >锁定外,所有这些锁定位错都可以在电子显微镜下观察到。< 110 >和< 111 >锁的形成以及两种滑移体系相互作用的混合,解释了Ni3Al中高温加工硬化峰的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信