Hierarchical ConViT with Attention-Based Relational Reasoner for Visual Analogical Reasoning

Wentao He, Jialu Zhang, Jianfeng Ren, Ruibin Bai, Xudong Jiang
{"title":"Hierarchical ConViT with Attention-Based Relational Reasoner for Visual Analogical Reasoning","authors":"Wentao He, Jialu Zhang, Jianfeng Ren, Ruibin Bai, Xudong Jiang","doi":"10.1609/aaai.v37i1.25072","DOIUrl":null,"url":null,"abstract":"Raven’s Progressive Matrices (RPMs) have been widely used to evaluate the visual reasoning ability of humans. To tackle the challenges of visual perception and logic reasoning on RPMs, we propose a Hierarchical ConViT with Attention-based Relational Reasoner (HCV-ARR). Traditional solution methods often apply relatively shallow convolution networks to visually perceive shape patterns in RPM images, which may not fully model the long-range dependencies of complex pattern combinations in RPMs. The proposed ConViT consists of a convolutional block to capture the low-level attributes of visual patterns, and a transformer block to capture the high-level image semantics such as pattern formations. Furthermore, the proposed hierarchical ConViT captures visual features from multiple receptive fields, where the shallow layers focus on the image fine details while the deeper layers focus on the image semantics. To better model the underlying reasoning rules embedded in RPM images, an Attention-based Relational Reasoner (ARR) is proposed to establish the underlying relations among images. The proposed ARR well exploits the hidden relations among question images through the developed element-wise attentive reasoner. Experimental results on three RPM datasets demonstrate that the proposed HCV-ARR achieves a significant performance gain compared with the state-of-the-art models. The source code is available at: https://github.com/wentaoheunnc/HCV-ARR.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"15 1","pages":"22-30"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i1.25072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Raven’s Progressive Matrices (RPMs) have been widely used to evaluate the visual reasoning ability of humans. To tackle the challenges of visual perception and logic reasoning on RPMs, we propose a Hierarchical ConViT with Attention-based Relational Reasoner (HCV-ARR). Traditional solution methods often apply relatively shallow convolution networks to visually perceive shape patterns in RPM images, which may not fully model the long-range dependencies of complex pattern combinations in RPMs. The proposed ConViT consists of a convolutional block to capture the low-level attributes of visual patterns, and a transformer block to capture the high-level image semantics such as pattern formations. Furthermore, the proposed hierarchical ConViT captures visual features from multiple receptive fields, where the shallow layers focus on the image fine details while the deeper layers focus on the image semantics. To better model the underlying reasoning rules embedded in RPM images, an Attention-based Relational Reasoner (ARR) is proposed to establish the underlying relations among images. The proposed ARR well exploits the hidden relations among question images through the developed element-wise attentive reasoner. Experimental results on three RPM datasets demonstrate that the proposed HCV-ARR achieves a significant performance gain compared with the state-of-the-art models. The source code is available at: https://github.com/wentaoheunnc/HCV-ARR.
基于注意的关系推理的层次卷积视觉类比推理
Raven 's Progressive Matrices (rpm)被广泛用于评估人类的视觉推理能力。为了解决rpm的视觉感知和逻辑推理问题,我们提出了一种基于关注的关系推理器(HCV-ARR)的分层卷积神经网络。传统的解决方法通常使用相对浅的卷积网络来视觉感知RPM图像中的形状模式,这可能无法完全模拟RPM中复杂模式组合的长期依赖关系。所提出的ConViT由卷积块和转换块组成,卷积块用于捕获视觉模式的低级属性,转换块用于捕获高级图像语义,如模式形成。此外,提出的分层ConViT从多个接受域捕获视觉特征,其中浅层专注于图像的精细细节,而深层专注于图像的语义。为了更好地建模RPM图像中嵌入的底层推理规则,提出了一种基于注意力的关系推理器(ARR)来建立图像之间的底层关系。本文提出的ARR通过开发的元素关注推理器,很好地利用了问题图像之间的隐藏关系。在三个RPM数据集上的实验结果表明,与目前最先进的模型相比,所提出的HCV-ARR模型取得了显着的性能提升。源代码可从https://github.com/wentaoheunnc/HCV-ARR获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信