{"title":"On the evolution of global ocean tides","authors":"Xing Wei","doi":"10.1080/03091929.2020.1797712","DOIUrl":null,"url":null,"abstract":"We apply Laplace's tidal theory to the evolution of lunar and solar tides on the geologic timescale of Earth's rotation and study the tidal resonance. We study the global tide in the mid-ocean far away from continents. On the short timescale, a linear relationship of tidal height and Earth's rotation is obtained. On the long timescale, the tide is less than 1 metre at present but it was 5 metres in the past and will reach 8 metres in the future because of resonances of tidal wave and Earth's rotation. We conclude that the Earth–Moon orbital separation and the slowdown of Earth's rotation are faster than expected before.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"22 1","pages":"184 - 191"},"PeriodicalIF":1.1000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1797712","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
We apply Laplace's tidal theory to the evolution of lunar and solar tides on the geologic timescale of Earth's rotation and study the tidal resonance. We study the global tide in the mid-ocean far away from continents. On the short timescale, a linear relationship of tidal height and Earth's rotation is obtained. On the long timescale, the tide is less than 1 metre at present but it was 5 metres in the past and will reach 8 metres in the future because of resonances of tidal wave and Earth's rotation. We conclude that the Earth–Moon orbital separation and the slowdown of Earth's rotation are faster than expected before.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.