On a Modified Durrmeyer-Bernstein Operator and Applications

Germain E. Randriambelosoa
{"title":"On a Modified Durrmeyer-Bernstein Operator and Applications","authors":"Germain E. Randriambelosoa","doi":"10.1155/AMRX.2005.169","DOIUrl":null,"url":null,"abstract":"We present two applications of a modified Durrmeyer-Bernsteinoperator introduced by Goodman and Sharma. A new method isproposed achieving a “good” degree reduction of a Beziercurve with endpoint interpolation. A convenient algorithm will begiven providing an easy and practical method for computing thedegree reduced curve. Then, given a set of (r+1) points, weconstruct a degree n Bezier curve approximation within adistance O(n −1/2 ) from the given points, where n does notdepend on r.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"27 1","pages":"169-182"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/AMRX.2005.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present two applications of a modified Durrmeyer-Bernsteinoperator introduced by Goodman and Sharma. A new method isproposed achieving a “good” degree reduction of a Beziercurve with endpoint interpolation. A convenient algorithm will begiven providing an easy and practical method for computing thedegree reduced curve. Then, given a set of (r+1) points, weconstruct a degree n Bezier curve approximation within adistance O(n −1/2 ) from the given points, where n does notdepend on r.
一种改进的Durrmeyer-Bernstein算子及其应用
本文给出了Goodman和Sharma引入的改进durrmeyer - bernstein算子的两种应用。提出了一种利用端点插值实现贝齐尔曲线“良好”度缩减的新方法。给出了一种简便的算法,为计算度化简曲线提供了一种简便实用的方法。然后,给定一组(r+1)个点,我们在距离给定点O(n - 1/2)的范围内构造一个n次贝塞尔曲线近似,其中n不依赖于r。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信