Searching for Dark Matter from the Sun with the IceCube Detector

J. Lazar, R. Abbasi, M. Ackermann, Jenni Adams, J. Aguilar, M. Ahlers, M. Ahrens, C. Alispach, A. A. Alves Junior, N. M. Amin, R. An, K. Andeen, T. Anderson, G. Anton, C. Arguelles, Y. Ashida, S. Axani, X. Bai, A. Balagopal V., A. Barbano, S. Barwick, B. Bastian, V. Basu, S. Baur, R. C. Bay, J. Beatty, K. Becker, J. Becker Tjus, C. Bellenghi, S. BenZvi, D. Berley, E. Bernardini, D. Besson, G. Binder, D. Bindig, E. Blaufuss, S. Blot, M. Boddenberg, F. Bontempo, J. Borowka, S. Boser, O. Botner, J. Bottcher, E. Bourbeau, F. Bradascio, J. Braun, S. Bron, J. Brostean-Kaiser, S. Browne, A. Burgman, R. Burley, R. Busse, M. Campana, E. Carnie-Bronca, Chujie Chen, D. Chirkin, K. Choi, B. Clark, K. Clark, L. Classen, Alan Coleman, G. Collin, J. Conrad, P. Coppin, P. Correa, D. Cowen, R. Cross, C. Dappen, Pranav Dave, C. De Clercq, J. DeLaunay, H. Dembinski, K. Deoskar, S. De Ridder, A. Desai, P. Desiati, K. de Vries, G. de Wasseige, M. De With, T. DeYoung, S. Dharani, Alejandro Diaz, J. C. Díaz-Vélez, M. Dittmer, H
{"title":"Searching for Dark Matter from the Sun with the IceCube Detector","authors":"J. Lazar, R. Abbasi, M. Ackermann, Jenni Adams, J. Aguilar, M. Ahlers, M. Ahrens, C. Alispach, A. A. Alves Junior, N. M. Amin, R. An, K. Andeen, T. Anderson, G. Anton, C. Arguelles, Y. Ashida, S. Axani, X. Bai, A. Balagopal V., A. Barbano, S. Barwick, B. Bastian, V. Basu, S. Baur, R. C. Bay, J. Beatty, K. Becker, J. Becker Tjus, C. Bellenghi, S. BenZvi, D. Berley, E. Bernardini, D. Besson, G. Binder, D. Bindig, E. Blaufuss, S. Blot, M. Boddenberg, F. Bontempo, J. Borowka, S. Boser, O. Botner, J. Bottcher, E. Bourbeau, F. Bradascio, J. Braun, S. Bron, J. Brostean-Kaiser, S. Browne, A. Burgman, R. Burley, R. Busse, M. Campana, E. Carnie-Bronca, Chujie Chen, D. Chirkin, K. Choi, B. Clark, K. Clark, L. Classen, Alan Coleman, G. Collin, J. Conrad, P. Coppin, P. Correa, D. Cowen, R. Cross, C. Dappen, Pranav Dave, C. De Clercq, J. DeLaunay, H. Dembinski, K. Deoskar, S. De Ridder, A. Desai, P. Desiati, K. de Vries, G. de Wasseige, M. De With, T. DeYoung, S. Dharani, Alejandro Diaz, J. C. Díaz-Vélez, M. Dittmer, H","doi":"10.22323/1.395.0020","DOIUrl":null,"url":null,"abstract":"The existence of dark matter (DM) has been well-established by repeated experiments probing various length scales. Even though DM is expected to make up 85% of the current matter content of the Universe, its nature remains unknown. One broad class of corpuscular DM motivated by Standard Model (SM) extensions is weakly interacting massive particles (WIMPs). WIMPs can generically have a non-zero cross-section with SM nuclei, which allows them to scatter off nuclei in large celestial bodies such as the Sun, losing energy and becoming gravitationally bound in the process. After repeated scattering, WIMPs sink to the solar center, leading to an excess of WIMPs there. Subsequently, WIMPs can annihilate to stable SM particles, either directly or through a decay chain of unstable SM particles. Among stable SM particles, only neutrinos can escape the dense solar core. Thus, one may look for an excess of neutrinos from the Sun’s direction as evidence of WIMPs. The IceCube Neutrino Observatory, which detects Cherenkov radiation of charged particles produced in neutrino interactions, is especially well-suited to such searches since it is sensitive to WIMPs with masses in the region preferred by supersymmetric extensions of the SM. In this contribution, I will present the results of IceCube’s most recent solar WIMP search, which includes all neutrino flavors, covers the WIMP mass range from 10 GeV to 1 TeV, and has world-leading sensitivity over this entire range for most channels considered.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.395.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The existence of dark matter (DM) has been well-established by repeated experiments probing various length scales. Even though DM is expected to make up 85% of the current matter content of the Universe, its nature remains unknown. One broad class of corpuscular DM motivated by Standard Model (SM) extensions is weakly interacting massive particles (WIMPs). WIMPs can generically have a non-zero cross-section with SM nuclei, which allows them to scatter off nuclei in large celestial bodies such as the Sun, losing energy and becoming gravitationally bound in the process. After repeated scattering, WIMPs sink to the solar center, leading to an excess of WIMPs there. Subsequently, WIMPs can annihilate to stable SM particles, either directly or through a decay chain of unstable SM particles. Among stable SM particles, only neutrinos can escape the dense solar core. Thus, one may look for an excess of neutrinos from the Sun’s direction as evidence of WIMPs. The IceCube Neutrino Observatory, which detects Cherenkov radiation of charged particles produced in neutrino interactions, is especially well-suited to such searches since it is sensitive to WIMPs with masses in the region preferred by supersymmetric extensions of the SM. In this contribution, I will present the results of IceCube’s most recent solar WIMP search, which includes all neutrino flavors, covers the WIMP mass range from 10 GeV to 1 TeV, and has world-leading sensitivity over this entire range for most channels considered.
用冰立方探测器寻找来自太阳的暗物质
暗物质(DM)的存在已经通过探测不同长度尺度的反复实验得到了证实。尽管DM预计占宇宙当前物质含量的85%,但其性质仍然未知。由标准模型(SM)扩展引发的一类广义的微粒子DM是弱相互作用大质量粒子(wimp)。wimp通常与SM核具有非零的横截面,这使得它们能够将大型天体(如太阳)中的原子核散射出去,在此过程中失去能量并受到引力束缚。在反复散射之后,wimp会下沉到太阳中心,导致那里的wimp数量过剩。随后,wimp可以直接或通过不稳定SM粒子的衰变链湮灭为稳定的SM粒子。在稳定的SM粒子中,只有中微子能够逃离致密的太阳核心。因此,人们可以从太阳方向寻找过量的中微子作为wimp存在的证据。冰立方中微子天文台可以探测到中微子相互作用中产生的带电粒子的切伦科夫辐射,它特别适合于这种搜索,因为它对质量在超对称SM扩展首选区域的wimp非常敏感。在这篇文章中,我将介绍冰立方最近的太阳WIMP搜索结果,其中包括所有中微子类型,涵盖了从10 GeV到1 TeV的WIMP质量范围,并且在整个范围内具有世界领先的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信