Quadratic differentials and circle patterns on complex projective tori

Wai Yeung Lam
{"title":"Quadratic differentials and circle patterns on complex projective tori","authors":"Wai Yeung Lam","doi":"10.2140/gt.2021.25.961","DOIUrl":null,"url":null,"abstract":"Given a triangulation of a closed surface, we consider a cross ratio system that assigns a complex number to every edge satisfying certain polynomial equations per vertex. Every cross ratio system induces a complex projective structure together with a circle pattern on the closed surface. In particular, there is an associated conformal structure. We show that for any triangulated torus, the projection from the space of cross ratio systems with prescribed Delaunay angles to the Teichmuller space is a covering map with at most one branch point. Our approach is based on a notion of discrete holomorphic quadratic differentials.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Given a triangulation of a closed surface, we consider a cross ratio system that assigns a complex number to every edge satisfying certain polynomial equations per vertex. Every cross ratio system induces a complex projective structure together with a circle pattern on the closed surface. In particular, there is an associated conformal structure. We show that for any triangulated torus, the projection from the space of cross ratio systems with prescribed Delaunay angles to the Teichmuller space is a covering map with at most one branch point. Our approach is based on a notion of discrete holomorphic quadratic differentials.
复射影环面上的二次微分与圆模式
给定一个封闭曲面的三角剖分,我们考虑一个交叉比系统,该系统为每个顶点满足某些多项式方程的每条边分配一个复数。每一个交叉比系统都在封闭的表面上形成一个复杂的投影结构和一个圆形图案。特别是,有一个相关的共形结构。我们证明了对于任何三角化环面,从具有指定Delaunay角的交叉比率系统的空间到Teichmuller空间的投影是一个最多有一个分支点的覆盖映射。我们的方法是基于离散全纯二次微分的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信