Neural Variational Identification and Filtering for Stochastic Non-linear Dynamical Systems with Application to Non-intrusive Load Monitoring

Henning Lange, M. Berges, J. Z. Kolter
{"title":"Neural Variational Identification and Filtering for Stochastic Non-linear Dynamical Systems with Application to Non-intrusive Load Monitoring","authors":"Henning Lange, M. Berges, J. Z. Kolter","doi":"10.1109/ICASSP.2019.8683552","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm for performing System Identification and inference of the filtering recursion for stochastic non-linear dynamical systems is introduced. Additionally, the algorithm allows for enforcing domain-constraints of the state variable. The algorithm makes use of an approximate inference technique called Variational Inference in conjunction with Deep Neural Networks as the optimization engine. Although general in its nature, the algorithm is evaluated in the context of Non-Intrusive Load Monitoring, the problem of inferring the operational state of individual electrical appliances given aggregate measurements of electrical power collected in a home.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"8 1","pages":"8340-8344"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, an algorithm for performing System Identification and inference of the filtering recursion for stochastic non-linear dynamical systems is introduced. Additionally, the algorithm allows for enforcing domain-constraints of the state variable. The algorithm makes use of an approximate inference technique called Variational Inference in conjunction with Deep Neural Networks as the optimization engine. Although general in its nature, the algorithm is evaluated in the context of Non-Intrusive Load Monitoring, the problem of inferring the operational state of individual electrical appliances given aggregate measurements of electrical power collected in a home.
随机非线性动力系统的神经变分辨识与滤波及其在非侵入式负荷监测中的应用
本文介绍了一种对随机非线性动力系统进行系统辨识和滤波递推推理的算法。此外,该算法允许执行状态变量的域约束。该算法利用一种称为变分推理的近似推理技术,并结合深度神经网络作为优化引擎。虽然其本质是通用的,但该算法是在非侵入式负载监测的背景下进行评估的,该问题是在给定家庭中收集的总电力测量值的情况下推断单个电器的运行状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信