Improved actionSLAM for long-term indoor tracking with wearable motion sensors

Michael Hardegger, G. Tröster, D. Roggen
{"title":"Improved actionSLAM for long-term indoor tracking with wearable motion sensors","authors":"Michael Hardegger, G. Tröster, D. Roggen","doi":"10.1145/2493988.2494328","DOIUrl":null,"url":null,"abstract":"We present an indoor tracking system based on two wearable inertial measurement units for tracking in home and workplace environments. It applies simultaneous localization and mapping with user actions as landmarks, themselves recognized by the wearable sensors. The approach is thus fully wearable and no pre-deployment effort is required. We identify weaknesses of past approaches and address them by introducing heading drift compensation, stance detection adaptation, and ellipse landmarks. Furthermore, we present an environment-independent parameter set that allows for robust tracking in daily-life scenarios. We assess the method on a dataset with five participants in different home and office environments, totaling 8.7h of daily routines and 2500m of travelled distance. This dataset is publicly released. The main outcome is that our algorithm converges 87% of the time to an accurate approximation of the ground truth map (0.52m mean landmark positioning error) in scenarios where previous approaches fail.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"10 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

We present an indoor tracking system based on two wearable inertial measurement units for tracking in home and workplace environments. It applies simultaneous localization and mapping with user actions as landmarks, themselves recognized by the wearable sensors. The approach is thus fully wearable and no pre-deployment effort is required. We identify weaknesses of past approaches and address them by introducing heading drift compensation, stance detection adaptation, and ellipse landmarks. Furthermore, we present an environment-independent parameter set that allows for robust tracking in daily-life scenarios. We assess the method on a dataset with five participants in different home and office environments, totaling 8.7h of daily routines and 2500m of travelled distance. This dataset is publicly released. The main outcome is that our algorithm converges 87% of the time to an accurate approximation of the ground truth map (0.52m mean landmark positioning error) in scenarios where previous approaches fail.
改进的actionSLAM用于长期室内跟踪可穿戴运动传感器
我们提出了一种基于两个可穿戴惯性测量单元的室内跟踪系统,用于家庭和工作环境的跟踪。它采用同步定位和地图,将用户的动作作为地标,这些动作本身由可穿戴传感器识别。因此,该方法是完全可穿戴的,不需要任何部署前的工作。我们识别了过去方法的弱点,并通过引入航向漂移补偿、姿态检测适应和椭圆地标来解决它们。此外,我们提出了一个与环境无关的参数集,允许在日常生活场景中进行鲁棒跟踪。我们在不同的家庭和办公环境中对五名参与者的数据集进行了评估,总共8.7小时的日常生活和2500米的旅行距离。这个数据集是公开发布的。主要结果是,在之前的方法失败的情况下,我们的算法在87%的时间内收敛到地面真值图的精确近似值(平均地标定位误差0.52米)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信