Network equilibrium of heterogeneous congestion control protocols

A. Tang, Jiantao Wang, S. Low, M. Chiang
{"title":"Network equilibrium of heterogeneous congestion control protocols","authors":"A. Tang, Jiantao Wang, S. Low, M. Chiang","doi":"10.1109/INFCOM.2005.1498359","DOIUrl":null,"url":null,"abstract":"When heterogeneous congestion control protocols that react to different pricing signals share the same network, the resulting equilibrium may no longer be interpreted as a solution to the standard utility maximization problem. We prove the existence of equilibrium under mild assumptions. Then we show that multi-protocol networks whose equilibria are locally non-unique or infinite in number can only form a set of measure zero. Multiple locally unique equilibria can arise in two ways. First, unlike in the single-protocol case, the set of bottleneck links can be non-unique with heterogeneous protocols even when the routing matrix has full row rank. The equilibria associated with different sets of bottleneck links are necessarily distinct. Second, even when there is a unique set of bottleneck links, network equilibrium can still be non-unique, but is always finite and odd in number. They cannot all be locally stable unless it is globally unique. Finally, we provide various sufficient conditions for global uniqueness. Numerical examples are used throughout the paper to illustrate these results.","PeriodicalId":20482,"journal":{"name":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","volume":"1 1","pages":"1338-1349 vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2005.1498359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

When heterogeneous congestion control protocols that react to different pricing signals share the same network, the resulting equilibrium may no longer be interpreted as a solution to the standard utility maximization problem. We prove the existence of equilibrium under mild assumptions. Then we show that multi-protocol networks whose equilibria are locally non-unique or infinite in number can only form a set of measure zero. Multiple locally unique equilibria can arise in two ways. First, unlike in the single-protocol case, the set of bottleneck links can be non-unique with heterogeneous protocols even when the routing matrix has full row rank. The equilibria associated with different sets of bottleneck links are necessarily distinct. Second, even when there is a unique set of bottleneck links, network equilibrium can still be non-unique, but is always finite and odd in number. They cannot all be locally stable unless it is globally unique. Finally, we provide various sufficient conditions for global uniqueness. Numerical examples are used throughout the paper to illustrate these results.
异构拥塞控制协议的网络均衡
当对不同定价信号作出反应的异构拥塞控制协议共享同一网络时,所产生的均衡可能不再被解释为标准效用最大化问题的解决方案。我们在温和的假设下证明了均衡的存在性。然后证明了平衡点局部非唯一或无穷多的多协议网络只能形成测度零的集合。多个局部唯一均衡可以通过两种方式产生。首先,与单一协议的情况不同,异构协议的瓶颈链路集可以是非唯一的,即使路由矩阵具有完整的行秩。与不同瓶颈环节相关联的均衡必然是不同的。其次,即使存在一组唯一的瓶颈链路,网络均衡仍然可以是非唯一的,但总是有限的和奇数的。它们不可能都是局部稳定的,除非它是全球唯一的。最后,给出了全局唯一性的各种充分条件。文中用数值算例来说明这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信