Universal Scaling Limits of the Symplectic Elliptic Ginibre Ensemble

Pub Date : 2021-08-12 DOI:10.1142/S2010326322500472
Sunggyu Byun, M. Ebke
{"title":"Universal Scaling Limits of the Symplectic Elliptic Ginibre Ensemble","authors":"Sunggyu Byun, M. Ebke","doi":"10.1142/S2010326322500472","DOIUrl":null,"url":null,"abstract":". We consider the eigenvalues of symplectic elliptic Ginibre matrices which are known to form a Pfaffian point process whose correlation kernel can be expressed in terms of the skew-orthogonal Hermite polynomials. We derive the scaling limits and the convergence rates of the correlation functions at the real bulk/edge of the spectrum, which in particular establishes the local universality at strong non-Hermiticity. Furthermore, we obtain the subleading corrections of the edge correlation kernels, which depend on the non-Hermiticity parameter contrary to the universal leading term. Our proofs are based on the asymptotic behaviour of the complex elliptic Ginibre ensemble due to Lee and Riser as well as on a version of the Christoffel-Darboux identity, a differential equation satisfied by the skew-orthogonal polynomial kernel.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326322500472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

. We consider the eigenvalues of symplectic elliptic Ginibre matrices which are known to form a Pfaffian point process whose correlation kernel can be expressed in terms of the skew-orthogonal Hermite polynomials. We derive the scaling limits and the convergence rates of the correlation functions at the real bulk/edge of the spectrum, which in particular establishes the local universality at strong non-Hermiticity. Furthermore, we obtain the subleading corrections of the edge correlation kernels, which depend on the non-Hermiticity parameter contrary to the universal leading term. Our proofs are based on the asymptotic behaviour of the complex elliptic Ginibre ensemble due to Lee and Riser as well as on a version of the Christoffel-Darboux identity, a differential equation satisfied by the skew-orthogonal polynomial kernel.
分享
查看原文
辛椭圆型Ginibre系综的普遍标度极限
. 我们考虑辛椭圆型Ginibre矩阵的特征值,已知它们构成一个Pfaffian点过程,其相关核可以用斜正交埃尔米特多项式表示。我们推导了相关函数在谱实块/谱边处的尺度极限和收敛速率,特别地建立了在强非厄米性处的局部普适性。此外,我们还得到了边缘相关核的子导校正,该子导校正依赖于与通用导项相反的非厄米参数。我们的证明是基于复椭圆Ginibre系综的渐近行为,由Lee和Riser以及一个版本的Christoffel-Darboux恒等式,一个由斜正交多项式核满足的微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信