On curves in K-theory and TR

IF 2.5 1区 数学 Q1 MATHEMATICS
Jonas McCandless
{"title":"On curves in K-theory and TR","authors":"Jonas McCandless","doi":"10.4171/jems/1347","DOIUrl":null,"url":null,"abstract":"We prove that TR is corepresentable by the reduced topological Hochschild homology of the flat affine line $\\mathbf{S}[t]$ as a functor defined on the $\\infty$-category of cyclotomic spectra with values in the $\\infty$-category of spectra with Frobenius lifts, refining a result of Blumberg-Mandell. We define the notion of an integral topological Cartier module using Barwick's formalism of spectral Mackey functors on orbital $\\infty$-categories, extending the work of Antieau-Nikolaus in the $p$-typical setting. As an application, we show that TR evaluated on a connective $\\mathbf{E}_1$-ring admits a description in terms of the spectrum of curves on algebraic K-theory generalizing the work of Hesselholt and Betley-Schlichtkrull.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":"69 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1347","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We prove that TR is corepresentable by the reduced topological Hochschild homology of the flat affine line $\mathbf{S}[t]$ as a functor defined on the $\infty$-category of cyclotomic spectra with values in the $\infty$-category of spectra with Frobenius lifts, refining a result of Blumberg-Mandell. We define the notion of an integral topological Cartier module using Barwick's formalism of spectral Mackey functors on orbital $\infty$-categories, extending the work of Antieau-Nikolaus in the $p$-typical setting. As an application, we show that TR evaluated on a connective $\mathbf{E}_1$-ring admits a description in terms of the spectrum of curves on algebraic K-theory generalizing the work of Hesselholt and Betley-Schlichtkrull.
关于k理论和TR中的曲线
我们用平面仿射线$\mathbf{S}[t]$的约简拓扑Hochschild同调证明了TR是可共表示的,它是定义在具有Frobenius举程的$\infty$ -谱域中的旋切谱的$\infty$ -范畴上的函子,改进了Blumberg-Mandell的结果。我们使用巴维克在轨道$\infty$ -范畴上的谱麦基函子的形式化定义了积分拓扑Cartier模的概念,扩展了antiau - nikolaus在$p$ -典型设置中的工作。作为一个应用,我们证明了连接$\mathbf{E}_1$ -环上的TR可以用代数k理论中的曲线谱来描述,这一理论推广了Hesselholt和Betley-Schlichtkrull的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS. The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards. Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004. The Journal of the European Mathematical Society is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信