{"title":"Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity","authors":"L. Mogilevich, E. Popova","doi":"10.18500/0869-6632-003040","DOIUrl":null,"url":null,"abstract":"Purpose of this paper is to study the evolution of longitudinal strain waves in the walls of an annular channel filled with a viscous incompressible fluid. The walls of the channel were represented as coaxial shells with fractional physical nonlinearity. The viscosity of the fluid and its influence on the wave process was taken into account within the study. Metods. The system of two evolutionary equations, which are generalized Schamel equations, was obtained by the two-scale asymptotic expansion method. The fractional nonlinearity of the channel wall material leads to the necessity to use a computational experiment to study the wave dynamics in them. The computational experiment was conducted based on obtaining new difference schemes for the governing equations. These schemes are analogous to the Crank–Nicholson scheme for modeling heat propagation. Results. Numerical simulation showed that over time, the velocity and amplitude of the deformation waves remain unchanged, and the wave propagation direction concurs with the positive direction of the longitudinal axis. The latter specifies that the velocity of the waves is supersonic. For a particular case, the coincidence of the computational experiment with the exact solution is shown. This substantiates the adequacy of the proposed difference scheme for the generalized Schamel equations. In addition, it was shown that solitary deformation waves in the channel walls are solitons.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"13 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose of this paper is to study the evolution of longitudinal strain waves in the walls of an annular channel filled with a viscous incompressible fluid. The walls of the channel were represented as coaxial shells with fractional physical nonlinearity. The viscosity of the fluid and its influence on the wave process was taken into account within the study. Metods. The system of two evolutionary equations, which are generalized Schamel equations, was obtained by the two-scale asymptotic expansion method. The fractional nonlinearity of the channel wall material leads to the necessity to use a computational experiment to study the wave dynamics in them. The computational experiment was conducted based on obtaining new difference schemes for the governing equations. These schemes are analogous to the Crank–Nicholson scheme for modeling heat propagation. Results. Numerical simulation showed that over time, the velocity and amplitude of the deformation waves remain unchanged, and the wave propagation direction concurs with the positive direction of the longitudinal axis. The latter specifies that the velocity of the waves is supersonic. For a particular case, the coincidence of the computational experiment with the exact solution is shown. This substantiates the adequacy of the proposed difference scheme for the generalized Schamel equations. In addition, it was shown that solitary deformation waves in the channel walls are solitons.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.