Power spectrum of turbulent convection in the solar photosphere

L. Y. Chaouche, R. Cameron, S. Solanki, T. Riethmuller, L. S. Anusha, V. Witzke, A. Shapiro, P. Barthol, A. Gandorfer, L. Gizon, J. Hirzberger, M. Noort, J. Rodr'iguez, J. C. D. T. Iniesta, D. O. Su'arez, W. Schmidt, V. Pillet, M. Knolker
{"title":"Power spectrum of turbulent convection in the solar photosphere","authors":"L. Y. Chaouche, R. Cameron, S. Solanki, T. Riethmuller, L. S. Anusha, V. Witzke, A. Shapiro, P. Barthol, A. Gandorfer, L. Gizon, J. Hirzberger, M. Noort, J. Rodr'iguez, J. C. D. T. Iniesta, D. O. Su'arez, W. Schmidt, V. Pillet, M. Knolker","doi":"10.1051/0004-6361/202037545","DOIUrl":null,"url":null,"abstract":"The solar photosphere provides us with a laboratory for understanding turbulence in a layer where the fundamental processes of transport vary rapidly and a strongly superadiabatic region lies very closely to a subadiabatic layer. Our tools for probing the turbulence are high-resolution spectropolarimetric observations such as have recently been obtained with the two sunrise missions, and numerical simulations. Our aim is to study photospheric turbulence with the help of Fourier power spectra that we compute from observations and simulations. We also attempt to explain some properties of the photospheric overshooting flow with the help of its governing equations and simulations. We find that quiet-Sun observations and smeared simulations exhibit a power-law behavior in the subgranular range of their Doppler velocity power spectra with an index of$~\\approx -2$. The unsmeared simulations exhibit a power-law index of$~\\approx -2.25$. The smearing considerably reduces the extent of the power-law-like portion of the spectra. Therefore, the limited spatial resolution in some observations might eventually result in larger uncertainties in the estimation of the power-law indices. \nThe simulated vertical velocity power spectra as a function of height show a rapid change in the power-law index from the solar surface to $300$~km above it. A scale-dependent transport of the vertical momentum occurs. At smaller scales, the vertical momentum is more efficiently transported sideways than at larger scales. This results in less vertical velocity power transported upward at small scales than at larger scales and produces a progressively steeper vertical velocity power law below $180$ km. Above this height, the gravity work progressively gains importance at all scales, making the atmosphere progressively more hydrostatic and resulting in a gradually less steep power law.","PeriodicalId":8493,"journal":{"name":"arXiv: Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202037545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The solar photosphere provides us with a laboratory for understanding turbulence in a layer where the fundamental processes of transport vary rapidly and a strongly superadiabatic region lies very closely to a subadiabatic layer. Our tools for probing the turbulence are high-resolution spectropolarimetric observations such as have recently been obtained with the two sunrise missions, and numerical simulations. Our aim is to study photospheric turbulence with the help of Fourier power spectra that we compute from observations and simulations. We also attempt to explain some properties of the photospheric overshooting flow with the help of its governing equations and simulations. We find that quiet-Sun observations and smeared simulations exhibit a power-law behavior in the subgranular range of their Doppler velocity power spectra with an index of$~\approx -2$. The unsmeared simulations exhibit a power-law index of$~\approx -2.25$. The smearing considerably reduces the extent of the power-law-like portion of the spectra. Therefore, the limited spatial resolution in some observations might eventually result in larger uncertainties in the estimation of the power-law indices. The simulated vertical velocity power spectra as a function of height show a rapid change in the power-law index from the solar surface to $300$~km above it. A scale-dependent transport of the vertical momentum occurs. At smaller scales, the vertical momentum is more efficiently transported sideways than at larger scales. This results in less vertical velocity power transported upward at small scales than at larger scales and produces a progressively steeper vertical velocity power law below $180$ km. Above this height, the gravity work progressively gains importance at all scales, making the atmosphere progressively more hydrostatic and resulting in a gradually less steep power law.
太阳光球中湍流对流的功率谱
太阳光球为我们提供了一个理解层内湍流的实验室,在这个层中,基本输运过程变化迅速,并且一个强烈的超绝热区非常靠近一个次绝热层。我们探测湍流的工具是高分辨率的光谱偏振观测,比如最近在两次日出任务中获得的观测结果,以及数值模拟。我们的目的是借助我们从观测和模拟中计算的傅立叶功率谱来研究光球湍流。我们还试图借助控制方程和模拟来解释光球超调流的一些特性。我们发现安静太阳观测和涂抹模拟在其多普勒速度功率谱的亚颗粒范围内表现出幂律行为,指数为$~\约-2$。未涂布的模拟结果显示幂律指数约为-2.25。这种涂抹大大降低了光谱中幂律部分的范围。因此,在某些观测中,有限的空间分辨率可能最终导致幂律指数估计的不确定性较大。模拟的垂直速度功率谱随高度的变化表明,从太阳表面到太阳表面以上300 ~km处的幂律指数变化很快。垂直动量的尺度相关传递发生了。在较小的尺度上,垂直动量比在较大的尺度上更有效地横向输送。这导致在小尺度上向上输送的垂直速度功率比在大尺度上要少,并且在$180$ km以下产生逐渐陡峭的垂直速度幂律。在这个高度以上,重力作用在所有尺度上都逐渐变得重要,使大气逐渐变得更加流体静力,导致幂律逐渐变得不那么陡峭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信