Tail index partition-based rules extraction with application to tornado damage insurance

IF 1.7 3区 经济学 Q2 ECONOMICS
ASTIN Bulletin Pub Date : 2023-02-22 DOI:10.1017/asb.2023.1
Arthur Maillart, C. Robert
{"title":"Tail index partition-based rules extraction with application to tornado damage insurance","authors":"Arthur Maillart, C. Robert","doi":"10.1017/asb.2023.1","DOIUrl":null,"url":null,"abstract":"Abstract The tail index is an important parameter that measures how extreme events occur. In many practical cases, this tail index depends on covariates. In this paper,we assume that it takes a finite number of values over a partition of the covariate space. This article proposes a tail index partition-based rules extraction method that is able to construct estimates of the partition subsets and estimates of the tail index values. The method combines two steps: first an additive tree ensemble based on the Gamma deviance is fitted, and second a hierarchical clustering with spatial constraints is used to estimate the subsets of the partition. We also propose a global tree surrogate model to approximate the partition-based rules while providing an explainable model from the initial covariates. Our procedure is illustrated on simulated data. A real case study on wind property damages caused by tornadoes is finally presented.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"16 1","pages":"258 - 284"},"PeriodicalIF":1.7000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2023.1","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The tail index is an important parameter that measures how extreme events occur. In many practical cases, this tail index depends on covariates. In this paper,we assume that it takes a finite number of values over a partition of the covariate space. This article proposes a tail index partition-based rules extraction method that is able to construct estimates of the partition subsets and estimates of the tail index values. The method combines two steps: first an additive tree ensemble based on the Gamma deviance is fitted, and second a hierarchical clustering with spatial constraints is used to estimate the subsets of the partition. We also propose a global tree surrogate model to approximate the partition-based rules while providing an explainable model from the initial covariates. Our procedure is illustrated on simulated data. A real case study on wind property damages caused by tornadoes is finally presented.
基于尾索引分区的规则提取及其在龙卷风灾害保险中的应用
尾指数是衡量极端事件发生方式的重要参数。在许多实际情况下,这个尾指数依赖于协变量。在本文中,我们假设它在协变量空间的一个分区上取有限个数的值。本文提出了一种基于尾索引分区的规则提取方法,该方法能够构造分区子集的估计和尾索引值的估计。该方法分为两个步骤:首先是基于伽玛偏差的加性树集合的拟合,其次是使用具有空间约束的分层聚类来估计分区的子集。我们还提出了一个全局树代理模型来近似基于分区的规则,同时从初始协变量提供一个可解释的模型。用模拟数据说明了我们的程序。最后给出了龙卷风造成的风财产损失的一个实际案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ASTIN Bulletin
ASTIN Bulletin 数学-数学跨学科应用
CiteScore
3.20
自引率
5.30%
发文量
24
审稿时长
>12 weeks
期刊介绍: ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信