The LDBC Social Network Benchmark: Business Intelligence Workload

Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler, Mingxi Wu, Yuchen Zhang, P. Boncz
{"title":"The LDBC Social Network Benchmark: Business Intelligence Workload","authors":"Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler, Mingxi Wu, Yuchen Zhang, P. Boncz","doi":"10.14778/3574245.3574270","DOIUrl":null,"url":null,"abstract":"The Social Network Benchmark's Business Intelligence workload (SNB BI) is a comprehensive graph OLAP benchmark targeting analytical data systems capable of supporting graph workloads. This paper marks the finalization of almost a decade of research in academia and industry via the Linked Data Benchmark Council (LDBC). SNB BI advances the state-of-the art in synthetic and scalable analytical database benchmarks in many aspects. Its base is a sophisticated data generator, implemented on a scalable distributed infrastructure, that produces a social graph with small-world phenomena, whose value properties follow skewed and correlated distributions and where values correlate with structure. This is a temporal graph where all nodes and edges follow lifespan-based rules with temporal skew enabling realistic and consistent temporal inserts and (recursive) deletes. The query workload exploiting this skew and correlation is based on LDBC's \"choke point\"-driven design methodology and will entice technical and scientific improvements in future (graph) database systems. SNB BI includes the first adoption of \"parameter curation\" in an analytical benchmark, a technique that ensures stable runtimes of query variants across different parameter values. Two performance metrics characterize peak single-query performance (power) and sustained concurrent query throughput. To demonstrate the portability of the benchmark, we present experimental results on a relational and a graph DBMS. Note that these do not constitute an official LDBC Benchmark Result - only audited results can use this trademarked term.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"32 1","pages":"877-890"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3574245.3574270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

The Social Network Benchmark's Business Intelligence workload (SNB BI) is a comprehensive graph OLAP benchmark targeting analytical data systems capable of supporting graph workloads. This paper marks the finalization of almost a decade of research in academia and industry via the Linked Data Benchmark Council (LDBC). SNB BI advances the state-of-the art in synthetic and scalable analytical database benchmarks in many aspects. Its base is a sophisticated data generator, implemented on a scalable distributed infrastructure, that produces a social graph with small-world phenomena, whose value properties follow skewed and correlated distributions and where values correlate with structure. This is a temporal graph where all nodes and edges follow lifespan-based rules with temporal skew enabling realistic and consistent temporal inserts and (recursive) deletes. The query workload exploiting this skew and correlation is based on LDBC's "choke point"-driven design methodology and will entice technical and scientific improvements in future (graph) database systems. SNB BI includes the first adoption of "parameter curation" in an analytical benchmark, a technique that ensures stable runtimes of query variants across different parameter values. Two performance metrics characterize peak single-query performance (power) and sustained concurrent query throughput. To demonstrate the portability of the benchmark, we present experimental results on a relational and a graph DBMS. Note that these do not constitute an official LDBC Benchmark Result - only audited results can use this trademarked term.
LDBC社会网络基准:商业智能工作负载
社交网络基准的商业智能工作负载(SNB BI)是一个全面的图形OLAP基准,针对能够支持图形工作负载的分析数据系统。这篇论文标志着学术界和工业界通过关联数据基准委员会(LDBC)进行了近十年的研究。SNB BI在许多方面推进了综合和可扩展分析数据库基准测试的最新技术。它的基础是一个复杂的数据生成器,在一个可扩展的分布式基础设施上实现,它产生一个具有小世界现象的社会图,其价值属性遵循倾斜和相关分布,其中价值与结构相关。这是一个时间图,其中所有节点和边都遵循基于寿命的规则,具有时间倾斜,支持现实和一致的时间插入和(递归)删除。利用这种倾斜和相关性的查询工作负载基于LDBC的“阻塞点”驱动的设计方法,并将在未来(图)数据库系统中吸引技术和科学改进。SNB BI首次在分析基准中采用了“参数管理”,这是一种确保跨不同参数值查询变量稳定运行的技术。两个性能指标描述了峰值单查询性能(功率)和持续并发查询吞吐量。为了证明基准的可移植性,我们给出了一个关系数据库管理系统和一个图数据库管理系统的实验结果。请注意,这些不构成官方的LDBC基准测试结果——只有经过审计的结果才能使用这个商标术语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信