Towards conservativity of 𝔾m–stabilization

IF 2 1区 数学
Tom Bachmann, Maria Yakerson
{"title":"Towards conservativity of 𝔾m–stabilization","authors":"Tom Bachmann, Maria Yakerson","doi":"10.2140/GT.2020.24.1969","DOIUrl":null,"url":null,"abstract":"We study the interplay of the homotopy coniveau tower, the Rost-Schmid complex of a strictly homotopy invariant sheaf, and homotopy modules. For a strictly homotopy invariant sheaf $M$, smooth $k$-scheme $X$ and $q \\geqslant 0$ we construct a novel cycle complex $C^*(X, M, q)$ and we prove that in favorable cases, $C^*(X, M, q)$ is equivalent to the homotopy coniveau tower $M^{(q)}(X)$. To do so we establish moving lemmas for the Rost-Schmid complex. As an application we deduce a cycle complex model for Milnor-Witt motivic cohomology. Furthermore we prove that if $M$ is a strictly homotopy invariant sheaf, then $M_{-2}$ is a homotopy module. Finally we conjecture that for $q>0$, $\\underline{\\pi}_0(M^{(q)})$ is a homotopy module, explain the significance of this conjecture for studying conservativity properties of the $\\mathbb{G}_m$-stabilization functor $\\mathcal{SH}^{S^1}\\!(k) \\to \\mathcal{SH}(k)$, and provide some evidence for the conjecture.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"38 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2020.24.1969","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study the interplay of the homotopy coniveau tower, the Rost-Schmid complex of a strictly homotopy invariant sheaf, and homotopy modules. For a strictly homotopy invariant sheaf $M$, smooth $k$-scheme $X$ and $q \geqslant 0$ we construct a novel cycle complex $C^*(X, M, q)$ and we prove that in favorable cases, $C^*(X, M, q)$ is equivalent to the homotopy coniveau tower $M^{(q)}(X)$. To do so we establish moving lemmas for the Rost-Schmid complex. As an application we deduce a cycle complex model for Milnor-Witt motivic cohomology. Furthermore we prove that if $M$ is a strictly homotopy invariant sheaf, then $M_{-2}$ is a homotopy module. Finally we conjecture that for $q>0$, $\underline{\pi}_0(M^{(q)})$ is a homotopy module, explain the significance of this conjecture for studying conservativity properties of the $\mathbb{G}_m$-stabilization functor $\mathcal{SH}^{S^1}\!(k) \to \mathcal{SH}(k)$, and provide some evidence for the conjecture.
论几何稳定的保守性
研究了同伦conveau塔、严格同伦不变束的Rost-Schmid复形和同伦模之间的相互作用。对于严格同伦不变束$M$、光滑$k$ -方案$X$和$q \geqslant 0$,构造了一个新的循环复合体$C^*(X, M, q)$,并证明了在有利情况下,$C^*(X, M, q)$等价于同伦conveau塔$M^{(q)}(X)$。为此,我们建立了罗斯特-施密德复合体的移动引理。作为应用,我们推导了Milnor-Witt动力上同的循环复模型。进一步证明了如果$M$是严格同伦不变轴,则$M_{-2}$是一个同伦模。最后,我们推测对于$q>0$, $\underline{\pi}_0(M^{(q)})$是一个同伦模,解释了这一猜想对于研究$\mathbb{G}_m$ -镇定函子$\mathcal{SH}^{S^1}\!(k) \to \mathcal{SH}(k)$的保守性的意义,并为这一猜想提供了一些证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信