A Visual Analytics Approach to Finding Factors Improving Automatic Speaker Identifications

P. Bruneau, M. Stefas, H. Bredin, Johann Poignant, T. Tamisier, C. Barras
{"title":"A Visual Analytics Approach to Finding Factors Improving Automatic Speaker Identifications","authors":"P. Bruneau, M. Stefas, H. Bredin, Johann Poignant, T. Tamisier, C. Barras","doi":"10.1145/2818346.2820769","DOIUrl":null,"url":null,"abstract":"Classification quality criteria such as precision, recall, and F-measure are generally the basis for evaluating contributions in automatic speaker recognition. Specifically, comparisons are carried out mostly via mean values estimated on a set of media. Whilst this approach is relevant to assess improvement w.r.t. the state-of-the-art, or ranking participants in the context of an automatic annotation challenge, it gives little insight to system designers in terms of cues for improving algorithms, hypothesis formulation, and evidence display. This paper presents a design study of a visual and interactive approach to analyze errors made by automatic annotation algorithms. A timeline-based tool emerged from prior steps of this study. A critical review, driven by user interviews, exposes caveats and refines user objectives. The next step of the study is then initiated by sketching designs combining elements of the current prototype to principles newly identified as relevant.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classification quality criteria such as precision, recall, and F-measure are generally the basis for evaluating contributions in automatic speaker recognition. Specifically, comparisons are carried out mostly via mean values estimated on a set of media. Whilst this approach is relevant to assess improvement w.r.t. the state-of-the-art, or ranking participants in the context of an automatic annotation challenge, it gives little insight to system designers in terms of cues for improving algorithms, hypothesis formulation, and evidence display. This paper presents a design study of a visual and interactive approach to analyze errors made by automatic annotation algorithms. A timeline-based tool emerged from prior steps of this study. A critical review, driven by user interviews, exposes caveats and refines user objectives. The next step of the study is then initiated by sketching designs combining elements of the current prototype to principles newly identified as relevant.
寻找提高自动说话人识别因素的可视化分析方法
分类质量标准,如精度、召回率和F-measure通常是评估自动说话人识别贡献的基础。具体来说,比较主要是通过在一组媒体上估计的平均值来进行的。虽然这种方法与评估最先进技术的改进或在自动注释挑战的上下文中对参与者进行排名相关,但它在改进算法、假设公式和证据显示的线索方面给系统设计者提供的见解很少。本文提出了一种可视化和交互式的方法来分析自动标注算法所产生的错误。基于时间轴的工具从本研究的先前步骤中出现。由用户访谈驱动的批判性审查,揭示了警告并改进了用户目标。研究的下一步是通过将当前原型的元素与新确定的相关原则结合起来进行草图设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信