{"title":"Template synthesis and characteristics of nanoparticle MgO","authors":"A. Bagheri, Z. Mirjani, Kahaki","doi":"10.7508/IJND.2015.04.013","DOIUrl":null,"url":null,"abstract":"Oxide nanoparticles can exhibit unique physical and chemical properties due to their limited size and a high density of corner or edge surface sites. In this study, MgO nanoparticle was synthesized using Mg(CH3COO)2 and hexamethylenetetramine as starting materials. The structure and optical properties of these particles are investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Visible absorption. The XRD analysis discloses that MgO nanoparticle is successfully synthesized. Dispersive analysis of X-RAY (EDAX) was used to characterize the size and morphology of the MgO nanoparticle on the template. The morphology of MgO was nanospheres.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2015.04.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Oxide nanoparticles can exhibit unique physical and chemical properties due to their limited size and a high density of corner or edge surface sites. In this study, MgO nanoparticle was synthesized using Mg(CH3COO)2 and hexamethylenetetramine as starting materials. The structure and optical properties of these particles are investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Visible absorption. The XRD analysis discloses that MgO nanoparticle is successfully synthesized. Dispersive analysis of X-RAY (EDAX) was used to characterize the size and morphology of the MgO nanoparticle on the template. The morphology of MgO was nanospheres.