Finite groups satisfying the independence property

S. D. Freedman, A. Lucchini, Daniele Nemmi, C. Roney-Dougal
{"title":"Finite groups satisfying the independence property","authors":"S. D. Freedman, A. Lucchini, Daniele Nemmi, C. Roney-Dougal","doi":"10.1142/S021819672350025X","DOIUrl":null,"url":null,"abstract":"We say that a finite group $G$ satisfies the independence property if, for every pair of distinct elements $x$ and $y$ of $G$, either $\\{x,y\\}$ is contained in a minimal generating set for $G$ or one of $x$ and $y$ is a power of the other. We give a complete classification of the finite groups with this property, and in particular prove that every such group is supersoluble. A key ingredient of our proof is a theorem showing that all but three finite almost simple groups $H$ contain an element $s$ such that the maximal subgroups of $H$ containing $s$, but not containing the socle of $H$, are pairwise non-conjugate.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"128 1","pages":"509-545"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S021819672350025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We say that a finite group $G$ satisfies the independence property if, for every pair of distinct elements $x$ and $y$ of $G$, either $\{x,y\}$ is contained in a minimal generating set for $G$ or one of $x$ and $y$ is a power of the other. We give a complete classification of the finite groups with this property, and in particular prove that every such group is supersoluble. A key ingredient of our proof is a theorem showing that all but three finite almost simple groups $H$ contain an element $s$ such that the maximal subgroups of $H$ containing $s$, but not containing the socle of $H$, are pairwise non-conjugate.
满足独立性的有限群
我们说一个有限群$G$满足独立性,如果对于$G$的每一对不同的元素$x$和$y$, $\{x,y\}$包含在$G$的最小生成集中,或者$x$和$y$中的一个是另一个的幂。我们给出了具有这一性质的有限群的一个完全分类,并特别证明了每一个这样的群都是超溶的。我们证明的一个关键成分是一个定理,证明除了三个有限几乎单群$H$以外的所有群$H$都包含一个元素$s$,使得$H$的极大子群包含$s$,但不包含$H$的集合,是成对非共轭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信