The Influence of Thermal Aging on Space Charge Distribution in Oil-impregnated Paper under AC Field

Guiyue Zhou, Y. Yin, Jiandong Wu, Lu Che
{"title":"The Influence of Thermal Aging on Space Charge Distribution in Oil-impregnated Paper under AC Field","authors":"Guiyue Zhou, Y. Yin, Jiandong Wu, Lu Che","doi":"10.1109/ICEMPE51623.2021.9509094","DOIUrl":null,"url":null,"abstract":"The winding insulation in transformer usually bears the combined action of DC and AC components during the operation. The positive and negative charges are injected from the electrodes respectively, while under the AC field, the injection of positive and negative charges alternately occurs on the single electrode due to the periodic change of the electric field polarity, and the direction of carrier migration changes with the applied field. Thus, the charge behavior under AC field is more complicated. In this paper, the space charge distribution in oil-impregnated paper with different aging times was measured under different frequency sinusoidal electric fields. According to the phase characteristics of charge distribution, the effect of thermal aging on the charge behavior under AC field was analyzed from the perspective of charge source. It shows that there is charge hysteresis in the insulation, that is, the residual charges injected in the previous cycle form a heterocharge accumulation after the voltage is reversed, resulting in serious field distortion. According to the preliminary analysis of the results from early aging period, the more severe the aging, the less obvious the charge hysteresis is, which may be related to the decrease of the trap depth caused by thermal degradation. It is speculated that the charge hysteresis under AC field is an important cause of accelerating the electrical aging of the insulation.","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"20 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The winding insulation in transformer usually bears the combined action of DC and AC components during the operation. The positive and negative charges are injected from the electrodes respectively, while under the AC field, the injection of positive and negative charges alternately occurs on the single electrode due to the periodic change of the electric field polarity, and the direction of carrier migration changes with the applied field. Thus, the charge behavior under AC field is more complicated. In this paper, the space charge distribution in oil-impregnated paper with different aging times was measured under different frequency sinusoidal electric fields. According to the phase characteristics of charge distribution, the effect of thermal aging on the charge behavior under AC field was analyzed from the perspective of charge source. It shows that there is charge hysteresis in the insulation, that is, the residual charges injected in the previous cycle form a heterocharge accumulation after the voltage is reversed, resulting in serious field distortion. According to the preliminary analysis of the results from early aging period, the more severe the aging, the less obvious the charge hysteresis is, which may be related to the decrease of the trap depth caused by thermal degradation. It is speculated that the charge hysteresis under AC field is an important cause of accelerating the electrical aging of the insulation.
交流电场下热老化对油浸纸空间电荷分布的影响
变压器绕组绝缘在运行过程中经常承受直流和交流分量的共同作用。正负电荷分别从电极注入,而在交流电场下,由于电场极性的周期性变化,正负电荷的注入在单个电极上交替发生,载流子迁移的方向随着外加电场的变化而变化。因此,交流电场作用下的电荷行为更为复杂。本文测量了不同频率正弦电场作用下不同老化时间浸渍纸的空间电荷分布。根据电荷分布的相位特征,从电荷源的角度分析了交流电场下热老化对电荷行为的影响。说明绝缘中存在电荷滞后现象,即前一个周期注入的剩余电荷在电压反转后形成异电荷积累,导致严重的场畸变。根据对早期时效结果的初步分析,时效越严重,电荷滞后越不明显,这可能与热降解导致的阱深度减小有关。推测交流电场作用下的电荷滞后是加速绝缘电老化的重要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信