Global Horizontal Irradiance Forecast at Kanto Region in Japan by Qunatile Regression of Support Vector Machine

T. Takamatsu, Hideaki Ohtake, T. Oozeki
{"title":"Global Horizontal Irradiance Forecast at Kanto Region in Japan by Qunatile Regression of Support Vector Machine","authors":"T. Takamatsu, Hideaki Ohtake, T. Oozeki","doi":"10.1109/PVSC43889.2021.9518856","DOIUrl":null,"url":null,"abstract":"In the interests of the stable operation of the transmission system, transmission system operators (TSOs) procure regulating power supplies to cope with significant deviations from renewable energy forecasts. Therefore, it becomes important to improve the average precision of the one-day ahead forecast and to decrease the maximum error of the forecast in a power transmission system with a large number of photovoltaic systems. In this paper, the quantile regression using support vector machines is applied to the prediction of the previous day’s solar radiation, and it is confirmed that maximum width of the error can be reduced while suppressing the minimum length of the prediction error.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"14 1","pages":"2646-2647"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the interests of the stable operation of the transmission system, transmission system operators (TSOs) procure regulating power supplies to cope with significant deviations from renewable energy forecasts. Therefore, it becomes important to improve the average precision of the one-day ahead forecast and to decrease the maximum error of the forecast in a power transmission system with a large number of photovoltaic systems. In this paper, the quantile regression using support vector machines is applied to the prediction of the previous day’s solar radiation, and it is confirmed that maximum width of the error can be reduced while suppressing the minimum length of the prediction error.
支持向量机分次回归预测日本关东地区全球水平辐照度
为了保证输电系统的稳定运行,输电系统运营商(tso)购买调节电源以应对与可再生能源预测的重大偏差。因此,在光伏系统较多的输变电系统中,提高一天前预测的平均精度,减小预测的最大误差就显得尤为重要。本文将支持向量机的分位数回归应用于前一天太阳辐射的预测,证实了在抑制预测误差的最小长度的同时,可以减小误差的最大宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信