Realized case of smart antenna in mobile communication systems

Y. Doi, Jun Kitakado, Tadayoshi Ito, T. Miyata, S. Nakao, T. Ohgane, Y. Ogawa
{"title":"Realized case of smart antenna in mobile communication systems","authors":"Y. Doi, Jun Kitakado, Tadayoshi Ito, T. Miyata, S. Nakao, T. Ohgane, Y. Ogawa","doi":"10.1109/WCT.2003.1321478","DOIUrl":null,"url":null,"abstract":"Summary form only given. Recently, many spatial signal processing technologies based on plural antennas and signal processing has been studied. It is well known that the technologies, i.e., adaptive array, space division multiple access (SDMA), and multi-input multi-output (MIMO) provide increasing communication quality, spectrum efficiency, and throughput. However, the technologies are not yet almost utilized for the actual product. In order to introduce the spatial signal processing technologies to real commercial products, we have studied and developed them. We consider that a mobile terminal has a limitation of performance of a processor and power consumption. Therefore, we have studied the technologies that do not require heavy performance for a mobile terminal. In this paper, we present results of our research and development: the adaptive array PHS base station, SDMA PHS test bed, MIMO PHS test bed, and adaptive array WLAN test bed. We have carried out field tests for the AA PHS BS in Tokyo. The results of the field test show that the AA PHS BS increases the system traffic by about 11% and reduces interference level as compared with the existing PHS BS. Results of the field test for the SDMA PHS test bed indicate that the SDMA test bed improves the traffic by about 2.4 to 2.7 times, and can coexist with the existing PHS BS. Results of the indoor test for the MIMO PHS test bed indicate that the test bed establishes two stable paths if the MIMO BS antenna distance is larger than 1.0 /spl lambda/ and the MIMO terminal antenna distance is larger than 0.3 /spl lambda/. We also have developed an adaptive array test bed for the wireless LAN, i.e., IEEE 802.11b. Results of the field test show that the AA-WLAN test bed expands communication distance by 1.9 times, and increases average throughput.","PeriodicalId":6305,"journal":{"name":"2003 IEEE Topical Conference on Wireless Communication Technology","volume":"68 1","pages":"180-"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Topical Conference on Wireless Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCT.2003.1321478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. Recently, many spatial signal processing technologies based on plural antennas and signal processing has been studied. It is well known that the technologies, i.e., adaptive array, space division multiple access (SDMA), and multi-input multi-output (MIMO) provide increasing communication quality, spectrum efficiency, and throughput. However, the technologies are not yet almost utilized for the actual product. In order to introduce the spatial signal processing technologies to real commercial products, we have studied and developed them. We consider that a mobile terminal has a limitation of performance of a processor and power consumption. Therefore, we have studied the technologies that do not require heavy performance for a mobile terminal. In this paper, we present results of our research and development: the adaptive array PHS base station, SDMA PHS test bed, MIMO PHS test bed, and adaptive array WLAN test bed. We have carried out field tests for the AA PHS BS in Tokyo. The results of the field test show that the AA PHS BS increases the system traffic by about 11% and reduces interference level as compared with the existing PHS BS. Results of the field test for the SDMA PHS test bed indicate that the SDMA test bed improves the traffic by about 2.4 to 2.7 times, and can coexist with the existing PHS BS. Results of the indoor test for the MIMO PHS test bed indicate that the test bed establishes two stable paths if the MIMO BS antenna distance is larger than 1.0 /spl lambda/ and the MIMO terminal antenna distance is larger than 0.3 /spl lambda/. We also have developed an adaptive array test bed for the wireless LAN, i.e., IEEE 802.11b. Results of the field test show that the AA-WLAN test bed expands communication distance by 1.9 times, and increases average throughput.
智能天线在移动通信系统中的实现案例
只提供摘要形式。近年来,基于多天线和信号处理的空间信号处理技术得到了广泛的研究。众所周知,自适应阵列、空分多址(SDMA)和多输入多输出(MIMO)等技术提供了不断提高的通信质量、频谱效率和吞吐量。然而,这些技术还没有被应用到实际产品中。为了将空间信号处理技术引入到实际的商业产品中,我们对空间信号处理技术进行了研究和开发。我们认为移动终端具有处理器性能和功耗的限制。因此,我们研究了对移动终端性能要求不高的技术。本文介绍了自适应阵列小灵通基站、SDMA小灵通试验台、MIMO小灵通试验台和自适应阵列无线局域网试验台的研究与开发成果。我们已在东京对AA小灵通BS进行了实地测试。现场测试结果表明,与现有的小灵通信号系统相比,AA小灵通信号系统的系统话务量提高了约11%,干扰水平降低了。SDMA小灵通试验台的现场测试结果表明,SDMA试验台的话务量提高了2.4 ~ 2.7倍,可与现有小灵通基站共存。MIMO小灵通试验台室内测试结果表明,当MIMO BS天线距离大于1.0 /spl lambda/, MIMO终端天线距离大于0.3 /spl lambda/时,试验台建立了两条稳定的路径。我们还为无线局域网开发了一个自适应阵列测试平台,即IEEE 802.11b。现场测试结果表明,AA-WLAN试验台的通信距离提高了1.9倍,平均吞吐量提高了1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信