ARGUABLY @ Causal News Corpus 2022: Contextually Augmented Language Models for Event Causality Identification

Guneet Singh Kohli, Prabsimran Kaur, Jatin Bedi
{"title":"ARGUABLY @ Causal News Corpus 2022: Contextually Augmented Language Models for Event Causality Identification","authors":"Guneet Singh Kohli, Prabsimran Kaur, Jatin Bedi","doi":"10.18653/v1/2022.case-1.20","DOIUrl":null,"url":null,"abstract":"Causal (a cause-effect relationship between two arguments) has become integral to various NLP domains such as question answering, summarization, and event prediction. To understand causality in detail, Event Causality Identification with Causal News Corpus (CASE-2022) has organized shared tasks. This paper defines our participation in Subtask 1, which focuses on classifying event causality. We used sentence-level augmentation based on contextualized word embeddings of distillBERT to construct new data. This data was then trained using two approaches. The first technique used the DeBERTa language model, and the second used the RoBERTa language model in combination with cross-attention. We obtained the second-best F1 score (0.8610) in the competition with the Contextually Augmented DeBERTa model.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"7 1","pages":"143-148"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Causal (a cause-effect relationship between two arguments) has become integral to various NLP domains such as question answering, summarization, and event prediction. To understand causality in detail, Event Causality Identification with Causal News Corpus (CASE-2022) has organized shared tasks. This paper defines our participation in Subtask 1, which focuses on classifying event causality. We used sentence-level augmentation based on contextualized word embeddings of distillBERT to construct new data. This data was then trained using two approaches. The first technique used the DeBERTa language model, and the second used the RoBERTa language model in combination with cross-attention. We obtained the second-best F1 score (0.8610) in the competition with the Contextually Augmented DeBERTa model.
争议@因果新闻语料库2022:事件因果关系识别的上下文增强语言模型
因果关系(两个论点之间的因果关系)已经成为各种NLP领域不可或缺的一部分,如问题回答,摘要和事件预测。为了详细理解因果关系,用因果新闻语料库识别事件因果关系(CASE-2022)组织了共享任务。本文定义了我们对子任务1的参与,子任务1的重点是对事件因果关系进行分类。我们使用基于distillBERT上下文化词嵌入的句子级增强来构建新数据。然后使用两种方法对这些数据进行训练。第一种技术使用了DeBERTa语言模型,第二种技术将RoBERTa语言模型与交叉注意相结合。我们使用上下文增强的DeBERTa模型获得了比赛中第二好的F1分数(0.8610)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信