{"title":"Recent Approaches of Matrix Release Tablet in NDDS System","authors":"Sashank Shekhar, Alok Kumar, Vinod Rana, R. Kumar, Chavi Mittal, Kanchan Tariyal","doi":"10.55544/jrasb.2.3.9","DOIUrl":null,"url":null,"abstract":"The purpose of this analysis is to categorize matrix tablets according to the kind of polymer they are made of as well as the rate at which they release their contents. When it came to medicinal applications, the matrix system was the very first oral extended release platform ever developed. The utilization of matrix tablets enables the modification of drug release characteristics. They are highly favored for this kind of treatment because of the benefits they give for the patient in terms of better adherence to the treatment, more stable medication levels, decreased dose and bad effects, and a bigger safety margin for highly potent medications. Because of their versatility in delivering a desired drug release profile, cheap cost, and general regulatory acceptability, hydrophilic polymer matrix systems are frequently used in oral controlled drug delivery dosage forms. Because of the rapid diffusion of the dissolved medication via the hydrophilic gel network, the use of hydrophilic matrix alone for delayed drug release is not possible for medicines that are very water soluble. It is now generally accepted that the formulation of such drugs requires the use of matrix systems that incorporate hydrophobic polymers. It would appear that the most successful strategy would be to create a formulation for oral controlled release by employing matrix tablets.","PeriodicalId":13755,"journal":{"name":"International Journal For Research in Applied Sciences and Biotechnology","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal For Research in Applied Sciences and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55544/jrasb.2.3.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The purpose of this analysis is to categorize matrix tablets according to the kind of polymer they are made of as well as the rate at which they release their contents. When it came to medicinal applications, the matrix system was the very first oral extended release platform ever developed. The utilization of matrix tablets enables the modification of drug release characteristics. They are highly favored for this kind of treatment because of the benefits they give for the patient in terms of better adherence to the treatment, more stable medication levels, decreased dose and bad effects, and a bigger safety margin for highly potent medications. Because of their versatility in delivering a desired drug release profile, cheap cost, and general regulatory acceptability, hydrophilic polymer matrix systems are frequently used in oral controlled drug delivery dosage forms. Because of the rapid diffusion of the dissolved medication via the hydrophilic gel network, the use of hydrophilic matrix alone for delayed drug release is not possible for medicines that are very water soluble. It is now generally accepted that the formulation of such drugs requires the use of matrix systems that incorporate hydrophobic polymers. It would appear that the most successful strategy would be to create a formulation for oral controlled release by employing matrix tablets.