Abdolhadi Zarifi , Mohammad Madani , Mohammad Jafarzadegan
{"title":"Auto-tuning PVT data using multi-objective optimization: Application of NSGA-II algorithm","authors":"Abdolhadi Zarifi , Mohammad Madani , Mohammad Jafarzadegan","doi":"10.1016/j.petlm.2023.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Reservoir simulation is known as perhaps the most widely used, accurate, and reliable method for field development in the petroleum industry. An integral part of a reliable reservoir simulation process is to consider robust and rigorous tuned EOS models. Traditionally, EOS models are tuned iteratively through arduous workflows against experimental PVT data. However, this comes with a number of drawbacks such as forcingly using weight factors, which upon alteration adversely affects the optimization process. The objective of the current work is thus to introduce an auto-tune PVT matching tool using NSGA-II multi-objective optimization. In order to illustrate the robustness of the presented technique, three different PVT samples are used, including two black-oil and one gas condensate sample. We utilize Peng-Robinson EOS during all the manual and auto-tuning processes. Comparison of auto-tuned EOS-generated results with those of experimental and computed statistical error values for these samples clearly show that the proposed method is robust. In addition, the proposed method, contrary to the manual matching process, provides the engineer with several matched solutions, which allows them to select a match based on the engineering background to be best amenable to the problem at hand. In addition, the proposed technique is fast, and can output several solutions within less time compared to the traditional manual matching method.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 1","pages":"Pages 135-149"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000226/pdfft?md5=d9745bf7c71d508419c136d77d386258&pid=1-s2.0-S2405656123000226-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoir simulation is known as perhaps the most widely used, accurate, and reliable method for field development in the petroleum industry. An integral part of a reliable reservoir simulation process is to consider robust and rigorous tuned EOS models. Traditionally, EOS models are tuned iteratively through arduous workflows against experimental PVT data. However, this comes with a number of drawbacks such as forcingly using weight factors, which upon alteration adversely affects the optimization process. The objective of the current work is thus to introduce an auto-tune PVT matching tool using NSGA-II multi-objective optimization. In order to illustrate the robustness of the presented technique, three different PVT samples are used, including two black-oil and one gas condensate sample. We utilize Peng-Robinson EOS during all the manual and auto-tuning processes. Comparison of auto-tuned EOS-generated results with those of experimental and computed statistical error values for these samples clearly show that the proposed method is robust. In addition, the proposed method, contrary to the manual matching process, provides the engineer with several matched solutions, which allows them to select a match based on the engineering background to be best amenable to the problem at hand. In addition, the proposed technique is fast, and can output several solutions within less time compared to the traditional manual matching method.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing