Extractor-based time-space lower bounds for learning

Sumegha Garg, R. Raz, Avishay Tal
{"title":"Extractor-based time-space lower bounds for learning","authors":"Sumegha Garg, R. Raz, Avishay Tal","doi":"10.1145/3188745.3188962","DOIUrl":null,"url":null,"abstract":"A matrix M: A × X → {−1,1} corresponds to the following learning problem: An unknown element x ∈ X is chosen uniformly at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) …, where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai,x). Assume that k, l, r are such that any submatrix of M of at least 2−k · |A| rows and at least 2−l · |X| columns, has a bias of at most 2−r. We show that any learning algorithm for the learning problem corresponding to M requires either a memory of size at least Ω(k · l ), or at least 2Ω(r) samples. The result holds even if the learner has an exponentially small success probability (of 2−Ω(r)). In particular, this shows that for a large class of learning problems, any learning algorithm requires either a memory of size at least Ω((log|X|) · (log|A|)) or an exponential number of samples, achieving a tight Ω((log|X|) · (log|A|)) lower bound on the size of the memory, rather than a bound of Ω(min{(log|X|)2,(log|A|)2}) obtained in previous works by Raz [FOCS’17] and Moshkovitz and Moshkovitz [ITCS’18]. Moreover, our result implies all previous memory-samples lower bounds, as well as a number of new applications. Our proof builds on the work of Raz [FOCS’17] that gave a general technique for proving memory samples lower bounds.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

A matrix M: A × X → {−1,1} corresponds to the following learning problem: An unknown element x ∈ X is chosen uniformly at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) …, where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai,x). Assume that k, l, r are such that any submatrix of M of at least 2−k · |A| rows and at least 2−l · |X| columns, has a bias of at most 2−r. We show that any learning algorithm for the learning problem corresponding to M requires either a memory of size at least Ω(k · l ), or at least 2Ω(r) samples. The result holds even if the learner has an exponentially small success probability (of 2−Ω(r)). In particular, this shows that for a large class of learning problems, any learning algorithm requires either a memory of size at least Ω((log|X|) · (log|A|)) or an exponential number of samples, achieving a tight Ω((log|X|) · (log|A|)) lower bound on the size of the memory, rather than a bound of Ω(min{(log|X|)2,(log|A|)2}) obtained in previous works by Raz [FOCS’17] and Moshkovitz and Moshkovitz [ITCS’18]. Moreover, our result implies all previous memory-samples lower bounds, as well as a number of new applications. Our proof builds on the work of Raz [FOCS’17] that gave a general technique for proving memory samples lower bounds.
基于提取器的学习时空下界
矩阵M: A × X→{−1,1}对应如下学习问题:随机均匀选择未知元素X∈X。学习者尝试从样本流(a1, b1), (a2, b2)…中学习x,其中对于每一个i, ai∈A是随机均匀选择的,且bi = M(ai,x)。假设k, l, r满足M的任意子矩阵至少有2−k·|A|行,至少有2−l·|X|列,其偏置不超过2−r。我们表明,任何与M对应的学习问题的学习算法都需要至少Ω(k·l)的内存大小,或者至少2Ω(r)个样本。即使学习者有一个指数级的小成功概率(2 - Ω(r)),结果仍然成立。特别地,这表明对于一大类学习问题,任何学习算法要么需要至少Ω((log|X|)·(log| a |))的内存大小,要么需要指数数量的样本,以实现内存大小的一个紧密的Ω((log|X|)·(log| a |))下界,而不是Raz [FOCS ' 17]和Moshkovitz和Moshkovitz [ITCS ' 18]在以前的工作中得到的Ω(min{(log|X|)2,(log| a |)2})的下界。此外,我们的结果暗示了所有以前的内存样本的下界,以及一些新的应用程序。我们的证明建立在Raz [FOCS ' 17]的工作基础上,该工作给出了证明内存样本下界的一般技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信