On-Chip Deep Neural Network Storage with Multi-Level eNVM

M. Donato, Brandon Reagen, Lillian Pentecost, Udit Gupta, D. Brooks, Gu-Yeon Wei
{"title":"On-Chip Deep Neural Network Storage with Multi-Level eNVM","authors":"M. Donato, Brandon Reagen, Lillian Pentecost, Udit Gupta, D. Brooks, Gu-Yeon Wei","doi":"10.1145/3195970.3196083","DOIUrl":null,"url":null,"abstract":"One of the biggest performance bottlenecks of today’s neural network (NN) accelerators is off-chip memory accesses [11]. In this paper, we propose a method to use multi-level, embedded nonvolatile memory (eNVM) to eliminate all off-chip weight accesses. The use of multi-level memory cells increases the probability of faults. Therefore, we co-design the weights and memories such that their properties complement each other and the faults result in no noticeable NN accuracy loss. In the extreme case, the weights in fully connected layers can be stored using a single transistor. With weight pruning and clustering, we show our technique reduces the memory area by over an order of magnitude compared to an SRAM baseline. In the case of VGG16 (130M weights), we are able to store all the weights in 4.9 mm2, well within the area allocated to SRAM in modern NN accelerators [6].","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"28 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

One of the biggest performance bottlenecks of today’s neural network (NN) accelerators is off-chip memory accesses [11]. In this paper, we propose a method to use multi-level, embedded nonvolatile memory (eNVM) to eliminate all off-chip weight accesses. The use of multi-level memory cells increases the probability of faults. Therefore, we co-design the weights and memories such that their properties complement each other and the faults result in no noticeable NN accuracy loss. In the extreme case, the weights in fully connected layers can be stored using a single transistor. With weight pruning and clustering, we show our technique reduces the memory area by over an order of magnitude compared to an SRAM baseline. In the case of VGG16 (130M weights), we are able to store all the weights in 4.9 mm2, well within the area allocated to SRAM in modern NN accelerators [6].
片上深度神经网络存储与多级eNVM
当今神经网络(NN)加速器最大的性能瓶颈之一是片外存储器访问。在本文中,我们提出了一种使用多级嵌入式非易失性存储器(eNVM)来消除所有片外权重访问的方法。多级存储单元的使用增加了故障的概率。因此,我们共同设计权重和记忆,使它们的属性互补,并且错误不会导致明显的神经网络精度损失。在极端情况下,可以使用单个晶体管存储完全连接层中的权重。通过权值修剪和聚类,我们展示了与SRAM基线相比,我们的技术将内存面积减少了一个数量级以上。在VGG16 (130M权重)的情况下,我们能够将所有权重存储在4.9 mm2中,完全在现代神经网络加速器[6]中分配给SRAM的区域内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信