A High-Throughput Structural and Electrochemical Study of Metallic Glass Formation in Ni–Ti–Al

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Howie Joress*, Brian L. DeCost, Suchismita Sarker, Trevor M. Braun, Sidra Jilani, Ryan Smith, Logan Ward, Kevin J. Laws, Apurva Mehta, Jason R. Hattrick-Simpers
{"title":"A High-Throughput Structural and Electrochemical Study of Metallic Glass Formation in Ni–Ti–Al","authors":"Howie Joress*,&nbsp;Brian L. DeCost,&nbsp;Suchismita Sarker,&nbsp;Trevor M. Braun,&nbsp;Sidra Jilani,&nbsp;Ryan Smith,&nbsp;Logan Ward,&nbsp;Kevin J. Laws,&nbsp;Apurva Mehta,&nbsp;Jason R. Hattrick-Simpers","doi":"10.1021/acscombsci.9b00215","DOIUrl":null,"url":null,"abstract":"<p >On the basis of a set of machine learning predictions of glass formation in the Ni–Ti–Al system, we have undertaken a high-throughput experimental study of that system. We utilized rapid synthesis followed by high-throughput structural and electrochemical characterization. Using this dual-modality approach, we are able to better classify the amorphous portion of the library, which we found to be the portion with a full width at half maximum (fwhm) of &gt;0.42 ?<sup>–1</sup> for the first sharp X-ray diffraction peak. Proper phase labeling is important for future machine learning efforts. We demonstrate that the fwhm and corrosion resistance are correlated but that, while chemistry still plays a role in corrosion resistance, a large fwhm, attributed to a glassy phase, is necessary for the highest corrosion resistance.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.9b00215","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.9b00215","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 29

Abstract

On the basis of a set of machine learning predictions of glass formation in the Ni–Ti–Al system, we have undertaken a high-throughput experimental study of that system. We utilized rapid synthesis followed by high-throughput structural and electrochemical characterization. Using this dual-modality approach, we are able to better classify the amorphous portion of the library, which we found to be the portion with a full width at half maximum (fwhm) of >0.42 ?–1 for the first sharp X-ray diffraction peak. Proper phase labeling is important for future machine learning efforts. We demonstrate that the fwhm and corrosion resistance are correlated but that, while chemistry still plays a role in corrosion resistance, a large fwhm, attributed to a glassy phase, is necessary for the highest corrosion resistance.

Abstract Image

Ni-Ti-Al金属玻璃形成的高通量结构和电化学研究
基于Ni-Ti-Al系统中玻璃形成的一组机器学习预测,我们对该系统进行了高通量实验研究。我们利用快速合成,然后进行高通量结构和电化学表征。使用这种双模态方法,我们能够更好地对文库的非晶部分进行分类,我们发现在第一个尖锐的x射线衍射峰的半最大值(fwhm)全宽度为>0.42 ? -1的部分。正确的阶段标记对未来的机器学习工作很重要。我们证明了fwhm和耐腐蚀性是相关的,但是,虽然化学仍然在耐腐蚀性中起作用,但由于玻璃相,较大的fwhm对于最高的耐腐蚀性是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信