Content categorization based on implicit and explicit user feedback: Combining self-reports with EEG emotional state analysis

U. Reiter, K. Moor
{"title":"Content categorization based on implicit and explicit user feedback: Combining self-reports with EEG emotional state analysis","authors":"U. Reiter, K. Moor","doi":"10.1109/QoMEX.2012.6263850","DOIUrl":null,"url":null,"abstract":"We present a study that combines and compares explicit (questionnaire-generated) and implicit (EEG-based) feedback from test subjects on perceptual dimensions of different types of audiovisual content. We found significant differences in importance and evaluation of perceptual-, viewer-and clip-related dimensions across a limited set of contents. The results suggest that additional bio-feedback data can help to increase validity and robustness of user feedback in Quality of Experience (QoE) and content categorization research.","PeriodicalId":6303,"journal":{"name":"2012 Fourth International Workshop on Quality of Multimedia Experience","volume":"32 1","pages":"266-271"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Workshop on Quality of Multimedia Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2012.6263850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We present a study that combines and compares explicit (questionnaire-generated) and implicit (EEG-based) feedback from test subjects on perceptual dimensions of different types of audiovisual content. We found significant differences in importance and evaluation of perceptual-, viewer-and clip-related dimensions across a limited set of contents. The results suggest that additional bio-feedback data can help to increase validity and robustness of user feedback in Quality of Experience (QoE) and content categorization research.
基于内隐和外显用户反馈的内容分类:结合自我报告和脑电图情绪状态分析
我们提出了一项研究,结合并比较了测试对象对不同类型视听内容的感知维度的显式(问卷生成)和内隐(基于脑电图)反馈。我们发现,在有限的一组内容中,感知、观看和剪辑相关维度的重要性和评估存在显著差异。研究结果表明,增加生物反馈数据有助于提高用户反馈在体验质量(QoE)和内容分类研究中的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信