Fermionic rational conformal field theories and modular linear differential equations

J. Bae, Z. Duan, Kimyeong Lee, Sungjay Lee, M. Sarkis
{"title":"Fermionic rational conformal field theories and modular linear differential equations","authors":"J. Bae, Z. Duan, Kimyeong Lee, Sungjay Lee, M. Sarkis","doi":"10.1093/PTEP/PTAB033","DOIUrl":null,"url":null,"abstract":"We define Modular Linear Differential Equations (MLDE) for the level-two congruence subgroups $\\Gamma_\\vartheta$, $\\Gamma^0(2)$ and $\\Gamma_0(2)$ of $\\text{SL}_2(\\mathbb Z)$. Each subgroup corresponds to one of the spin structures on the torus. The pole structures of the fermionic MLDEs are investigated by exploiting the valence formula for the level-two congruence subgroups. We focus on the first and second order holomorphic MLDEs without poles and use them to find a large class of `Fermionic Rational Conformal Field Theories', which have non-negative integer coefficients in the $q$-series expansion of their characters. We study the detailed properties of these fermionic RCFTs, some of which are supersymmetric. This work also provides a starting point for the classification of the fermionic Modular Tensor Category.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/PTEP/PTAB033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We define Modular Linear Differential Equations (MLDE) for the level-two congruence subgroups $\Gamma_\vartheta$, $\Gamma^0(2)$ and $\Gamma_0(2)$ of $\text{SL}_2(\mathbb Z)$. Each subgroup corresponds to one of the spin structures on the torus. The pole structures of the fermionic MLDEs are investigated by exploiting the valence formula for the level-two congruence subgroups. We focus on the first and second order holomorphic MLDEs without poles and use them to find a large class of `Fermionic Rational Conformal Field Theories', which have non-negative integer coefficients in the $q$-series expansion of their characters. We study the detailed properties of these fermionic RCFTs, some of which are supersymmetric. This work also provides a starting point for the classification of the fermionic Modular Tensor Category.
费米子有理共形场理论与模线性微分方程
我们定义了$\text{SL}_2(\mathbb Z)$的二阶同余子群$\Gamma_\vartheta$, $\Gamma^0(2)$和$\Gamma_0(2)$的模线性微分方程(MLDE)。每个子群对应于环面上的一个自旋结构。利用二级同余子群的价态公式研究了费米子MLDEs的极点结构。本文主要研究了一阶和二阶无极点全纯MLDEs,并利用它们找到了一类具有非负整数系数的“费米子有理共形场论”,这些理论在其性质的$q$-级数展开中具有非负整数系数。我们研究了这些费米子RCFTs的详细性质,其中一些是超对称的。这项工作也为费米子模张量范畴的分类提供了一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信