P. Batruny, H. Yahya, N. Kadir, A. Omar, Z. Zakaria, Saravanan Batamale, Noreffendy Jayah
{"title":"Drilling in the Digital Age: An Aproach to Optimizing ROP Using Machine Learning","authors":"P. Batruny, H. Yahya, N. Kadir, A. Omar, Z. Zakaria, Saravanan Batamale, Noreffendy Jayah","doi":"10.2118/197157-ms","DOIUrl":null,"url":null,"abstract":"\n Low rates of penetration (ROP) were experienced in an area with well-known lithology. The vast drilling experience and similarity of drilling conditions in the area, provided the operator with enough data to improve the well schedule and cost performance through the use of machine learning.\n Machine learning, specifically artificial neural networks (ANN), is a statistical tool to find relations between multiple inputs. Details that would have been missed or considered outliers by a mathematical model can be accounted for and explained in the ANN model. The ANN was trained on thousands of real time data points recorded from selected wells in a specific depth interval. Typical drilling parameters such as weight on bit, rotary speed, bit hydraulics, lithological properties, and dogleg severity were the input parameters chosen in the model to generate ROP. Once the model was calibrated to historical data, it was used to find the best parameters to maximize ROP.\n R squared factors were 0.729 and 0.675 for 12.25 in. and 17.5 in. sections repectively. This was achieved with an ANN structure of 2 hidden layers consisting of 5 nodes each. Sensitivity analysis identified bit hydraulics, weight on bit, and rotary speed as the major parameters impacting ROP. The ROP model was used to conduct a \"virtual drill-off test\" to identify drilling parameters that maximize ROP. ROP dependency on weight on bit and lithological analysis suggests bit design can be further improved. Bit hydraulics showed that higher flow rate was needed in sections with higher overbalance. Optimum drilling parameters were tested on four wells and resulted in more than 50% higher ROP compared to original field data.\n In an industry increasingly dominated by big data, separating the clean data from the \"noise\" will be a vital topic. This paper aims to provide a blueprint for the use machine learning to optimize ROP in a manner that is simple and easily replicated.","PeriodicalId":11091,"journal":{"name":"Day 3 Wed, November 13, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 13, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197157-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Low rates of penetration (ROP) were experienced in an area with well-known lithology. The vast drilling experience and similarity of drilling conditions in the area, provided the operator with enough data to improve the well schedule and cost performance through the use of machine learning.
Machine learning, specifically artificial neural networks (ANN), is a statistical tool to find relations between multiple inputs. Details that would have been missed or considered outliers by a mathematical model can be accounted for and explained in the ANN model. The ANN was trained on thousands of real time data points recorded from selected wells in a specific depth interval. Typical drilling parameters such as weight on bit, rotary speed, bit hydraulics, lithological properties, and dogleg severity were the input parameters chosen in the model to generate ROP. Once the model was calibrated to historical data, it was used to find the best parameters to maximize ROP.
R squared factors were 0.729 and 0.675 for 12.25 in. and 17.5 in. sections repectively. This was achieved with an ANN structure of 2 hidden layers consisting of 5 nodes each. Sensitivity analysis identified bit hydraulics, weight on bit, and rotary speed as the major parameters impacting ROP. The ROP model was used to conduct a "virtual drill-off test" to identify drilling parameters that maximize ROP. ROP dependency on weight on bit and lithological analysis suggests bit design can be further improved. Bit hydraulics showed that higher flow rate was needed in sections with higher overbalance. Optimum drilling parameters were tested on four wells and resulted in more than 50% higher ROP compared to original field data.
In an industry increasingly dominated by big data, separating the clean data from the "noise" will be a vital topic. This paper aims to provide a blueprint for the use machine learning to optimize ROP in a manner that is simple and easily replicated.