Big Data: Sources and Best Practices for Analytics

A. Luntovskyy, L. Globa
{"title":"Big Data: Sources and Best Practices for Analytics","authors":"A. Luntovskyy, L. Globa","doi":"10.1109/UkrMiCo47782.2019.9165334","DOIUrl":null,"url":null,"abstract":"Cyber-PHY, IoT, sensor networks, Robotics (thick and server-less mobile applications), real-time network applications (thin clouds clients) can generate large arrays of unmanaged, weakly structured, and non-configured data of various types, known as \"Big Data\". With the acceleration of industrial development \"Industry 4.0\" processing of such data became considerably more complicated. However, so-called problem \"Big Data\" is hard to solve or resist nowadays! The paper discusses the Best Practises and Case Studies aimed to overcoming of the Big Data problematics.","PeriodicalId":6754,"journal":{"name":"2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo)","volume":"30 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UkrMiCo47782.2019.9165334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cyber-PHY, IoT, sensor networks, Robotics (thick and server-less mobile applications), real-time network applications (thin clouds clients) can generate large arrays of unmanaged, weakly structured, and non-configured data of various types, known as "Big Data". With the acceleration of industrial development "Industry 4.0" processing of such data became considerably more complicated. However, so-called problem "Big Data" is hard to solve or resist nowadays! The paper discusses the Best Practises and Case Studies aimed to overcoming of the Big Data problematics.
《大数据:分析的来源和最佳实践
网络物理、物联网、传感器网络、机器人(厚和无服务器的移动应用)、实时网络应用(瘦云客户端)可以生成大量非管理、弱结构和非配置的各种类型的数据,被称为“大数据”。随着工业发展的加速,“工业4.0”对这些数据的处理变得更加复杂。然而,所谓的“大数据”问题在当今是难以解决或难以抗拒的!本文讨论了旨在克服大数据问题的最佳实践和案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信