Application of Conjugated Organic Polymers for Photovoltaic's: Review

T. Tadesse
{"title":"Application of Conjugated Organic Polymers for Photovoltaic's: Review","authors":"T. Tadesse","doi":"10.4172/2161-0398.1000263","DOIUrl":null,"url":null,"abstract":"Photovoltaic effect is the emergence of a voltage between electrodes attached to a solid or liquid system up on shining light on to this system. Conjugated polymer is a molecular entity whose structure is represented as a system of alternating single and double bonds which give rise to their semi-conductor properties. Conjugated polymers are used for photovoltaic devices because, intrinsically stable up on photoexcitation with visible light, High absorption cross-section for photon harvesting, Tunable band gap with in the entire visible spectral range and High yield of charge generation when mixed with electron acceptor materials. The important physical process in the energy conversion process that take place in polymers for photovoltaic cells are; Absorption of a photon of light by photoactive material and generation of excitons, diffusion of excitons in conjugated polymers, dissociation of charge carriers (electron-hole pair) at the donor-acceptor interface in to free carriers, transport of free carriers towards the electrodes, and extraction of the charge carriers at the respective electrode interfaces. The efficiency of converting solar to electrical energy by a solar cell depends on the band gap of the light absorbing semiconductor. Band gap (Eg) is the difference in energy between the HOMO and LUMO and there by the maximum amount of energy required for an excitation or is the energy difference between the edges of the conduction band and valence band. The power conversion efficiency is a function of band gap. For device architectures of conjugated polymer based photovoltaic cells; there are three types Single layer photovoltaic cell, Bilayer hetero junction photovoltaic cell and Bulk hetero junction Photovoltaic cell.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":"39 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Photovoltaic effect is the emergence of a voltage between electrodes attached to a solid or liquid system up on shining light on to this system. Conjugated polymer is a molecular entity whose structure is represented as a system of alternating single and double bonds which give rise to their semi-conductor properties. Conjugated polymers are used for photovoltaic devices because, intrinsically stable up on photoexcitation with visible light, High absorption cross-section for photon harvesting, Tunable band gap with in the entire visible spectral range and High yield of charge generation when mixed with electron acceptor materials. The important physical process in the energy conversion process that take place in polymers for photovoltaic cells are; Absorption of a photon of light by photoactive material and generation of excitons, diffusion of excitons in conjugated polymers, dissociation of charge carriers (electron-hole pair) at the donor-acceptor interface in to free carriers, transport of free carriers towards the electrodes, and extraction of the charge carriers at the respective electrode interfaces. The efficiency of converting solar to electrical energy by a solar cell depends on the band gap of the light absorbing semiconductor. Band gap (Eg) is the difference in energy between the HOMO and LUMO and there by the maximum amount of energy required for an excitation or is the energy difference between the edges of the conduction band and valence band. The power conversion efficiency is a function of band gap. For device architectures of conjugated polymer based photovoltaic cells; there are three types Single layer photovoltaic cell, Bilayer hetero junction photovoltaic cell and Bulk hetero junction Photovoltaic cell.
共轭有机聚合物在光伏领域的应用综述
光伏效应是指当光照射到一个固体或液体系统上时,电极之间会产生电压。共轭聚合物是一种分子实体,其结构表现为单键和双键交替的系统,从而产生半导体性质。共轭聚合物被用于光伏器件,因为它在可见光激发下具有固有的稳定性,光子捕获的高吸收截面,在整个可见光谱范围内可调谐的带隙以及与电子受体材料混合时的高电荷产率。光伏电池用聚合物中发生的能量转换过程中重要的物理过程有;光活性材料对光子的吸收和激子的产生,激子在共轭聚合物中的扩散,供体-受体界面上载流子(电子-空穴对)解离为自由载流子,自由载流子向电极的输运,以及各自电极界面上载流子的提取。太阳能电池将太阳能转化为电能的效率取决于光吸收半导体的带隙。带隙(Eg)是HOMO和LUMO之间的能量差,在那里是激发所需的最大能量,或者是导带和价带边缘之间的能量差。功率转换效率是带隙的函数。共轭聚合物光伏电池的器件结构研究有单层光伏电池、双层异质结光伏电池和块状异质结光伏电池三种类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信