{"title":"Spectral Estimation of Noisy Seismogram using Time-Frequency Analyses","authors":"V. Devi, M. Sharma","doi":"10.4018/IJGEE.2016010102","DOIUrl":null,"url":null,"abstract":"Time–Frequency analyses have the advantage of explaining the signal features in both time domain and frequency domain. This paper explores the performance of Time–Frequency analyses on noisy seismograms acquired from seismically active region in NW Himalayan. The Short Term Fourier Transform, Gabor Transform, Wavelet Transform and Wigner-Ville Distribution have been used in the present study to carry out Time-Frequency analyses. Parametric study has been carried out by varying basic parameters viz. sampling, window size and types. Wavelet analysis (Continuous Wavelet Transform) has been studied with different type of wavelets. The seismograms have been stacked in time-frequency domain using Gabor Transform and have been converted using Discrete Gabor Expansion techniques. The Spectrograms reveals better spectral estimation in time-frequency domain than Fourier Transform and hence recommended to estimate dominate frequency components, phase marking and timings of phase. The time of occurrence of frequency component corresponding to maximum energy burst can be identified on seismograms","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"20 1","pages":"19-32"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGEE.2016010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Time–Frequency analyses have the advantage of explaining the signal features in both time domain and frequency domain. This paper explores the performance of Time–Frequency analyses on noisy seismograms acquired from seismically active region in NW Himalayan. The Short Term Fourier Transform, Gabor Transform, Wavelet Transform and Wigner-Ville Distribution have been used in the present study to carry out Time-Frequency analyses. Parametric study has been carried out by varying basic parameters viz. sampling, window size and types. Wavelet analysis (Continuous Wavelet Transform) has been studied with different type of wavelets. The seismograms have been stacked in time-frequency domain using Gabor Transform and have been converted using Discrete Gabor Expansion techniques. The Spectrograms reveals better spectral estimation in time-frequency domain than Fourier Transform and hence recommended to estimate dominate frequency components, phase marking and timings of phase. The time of occurrence of frequency component corresponding to maximum energy burst can be identified on seismograms