{"title":"Combined Radiation and Convection in Developing Flow in a Parallel Plate Channel with Real Gas Behavior: The Case of Gas Cooling","authors":"Kyle Pulsipher, B. W. Webb","doi":"10.1115/1.4062205","DOIUrl":null,"url":null,"abstract":"\n The effect of real gas volumetric radiation on the thermal development in laminar parallel plate channel flow of H2O and/or CO2 in the case of gas cooling has been investigated numerically. The non-gray radiation effects of the gas have been treated using a global spectral approach, the Spectral Line Weighted-sum-of-gray-gases model. The results reveal that gas radiation results in significantly higher total heat transfer to the cooled channel wall, with an attendant more rapid drop in gas mean temperature. Gas radiation is seen to increase the local convective and total (radiative plus convective) Nusselt number for increasing radiating species mole fraction for both H2O and CO2, and for increasing gas inlet temperature. The influence of gas radiation on the thermal development is lower for CO2 than for H2O. An apparent thermally fully-developed condition may exist for this combined convection-radiation problem with real gases in the gas cooling scenario, and radiation has the effect of significantly extending the thermally developing region. Combined hydrodynamic and thermal development yields higher heat transfer than the thermally developing condition. Smaller channel wall spacing results in lower radiative heat transfer, and the aforementioned radiation effects are diminished. Local convective and radiative flux, and thermal entry length also increase with elevated gas total pressure.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"24 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062205","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of real gas volumetric radiation on the thermal development in laminar parallel plate channel flow of H2O and/or CO2 in the case of gas cooling has been investigated numerically. The non-gray radiation effects of the gas have been treated using a global spectral approach, the Spectral Line Weighted-sum-of-gray-gases model. The results reveal that gas radiation results in significantly higher total heat transfer to the cooled channel wall, with an attendant more rapid drop in gas mean temperature. Gas radiation is seen to increase the local convective and total (radiative plus convective) Nusselt number for increasing radiating species mole fraction for both H2O and CO2, and for increasing gas inlet temperature. The influence of gas radiation on the thermal development is lower for CO2 than for H2O. An apparent thermally fully-developed condition may exist for this combined convection-radiation problem with real gases in the gas cooling scenario, and radiation has the effect of significantly extending the thermally developing region. Combined hydrodynamic and thermal development yields higher heat transfer than the thermally developing condition. Smaller channel wall spacing results in lower radiative heat transfer, and the aforementioned radiation effects are diminished. Local convective and radiative flux, and thermal entry length also increase with elevated gas total pressure.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.