A Stepwise Approach for High-Dimensional Gaussian Graphical Models

R. Zamar, M. Ruiz, G. Lafit, Javier Nogales
{"title":"A Stepwise Approach for High-Dimensional Gaussian Graphical Models","authors":"R. Zamar, M. Ruiz, G. Lafit, Javier Nogales","doi":"10.52933/jdssv.v1i2.11","DOIUrl":null,"url":null,"abstract":"We present a stepwise approach to estimate high dimensional Gaussian graphical models. We exploit the relation between the partial correlation coefficients and the distribution of the prediction errors, and parametrize the model in terms of the Pearson correlation coefficients between the prediction errors of the nodes’ best linear predictors. We propose a novel stepwise algorithm for detecting pairs of conditionally dependent variables. We compare the proposed algorithm with existing methods including graphical lasso (Glasso), constrained `l1-minimization(CLIME) and equivalent partial correlation (EPC), via simulation studies and real life applications. In our simulation study we consider several model settings and report the results using different performance measures that look at desirable features of the recovered graph.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v1i2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a stepwise approach to estimate high dimensional Gaussian graphical models. We exploit the relation between the partial correlation coefficients and the distribution of the prediction errors, and parametrize the model in terms of the Pearson correlation coefficients between the prediction errors of the nodes’ best linear predictors. We propose a novel stepwise algorithm for detecting pairs of conditionally dependent variables. We compare the proposed algorithm with existing methods including graphical lasso (Glasso), constrained `l1-minimization(CLIME) and equivalent partial correlation (EPC), via simulation studies and real life applications. In our simulation study we consider several model settings and report the results using different performance measures that look at desirable features of the recovered graph.
高维高斯图模型的一种逐步逼近方法
我们提出了一种估计高维高斯图模型的逐步方法。我们利用偏相关系数与预测误差分布之间的关系,并根据节点最佳线性预测器预测误差之间的Pearson相关系数对模型进行参数化。我们提出了一种新的逐步检测条件因变量对的算法。通过仿真研究和实际应用,我们将所提出的算法与现有的方法进行了比较,包括图形套索(Glasso)、约束最小化(CLIME)和等效偏相关(EPC)。在我们的模拟研究中,我们考虑了几种模型设置,并使用不同的性能度量来报告结果,这些性能度量着眼于恢复图的理想特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信